
9月10日,工业和信息化部在北京召开媒体通气会,表示将按照国务院的部署,与国家发改委一起牵头,组织各部门、各地方全力做好《促进大数据发展行动纲要》的实施工作,重点抓好我国大数据技术和产业的创新与发展,提升大产业支撑能力,培育新业态新模式,并从五个方面开展工作。
一是支持大数据技术和产业创新发展。目前,工信部正在制定《大数据产业“十三五”发展规划》,还将出台促进大数据产业发展的推进计划,统筹布局大数据技术和产业发展。促进规划、标准、技术、产业、安全、应用的协同发展,为《行动纲要》的实施提供技术和产业支撑与保障。组织实施“大数据关键技术及产品研发与产业化工程”,加强自主创新,通过相关项目和资金引导支持关键技术产品研发及产业化;开发面向工业、电信、金融、交通、医疗等数据密集型行业的大数据应用解决方案;力争形成先进的技术体系、完善的产品体系和高效的应用服务体系。
二是促进大数据与其他产业的融合发展,着力发展工业大数据,加强产业生态体系建设。组织实施“工业和新兴产业大数据工程”,围绕落实《中国制造2025》,支持开发工业大数据解决方案,利用大数据培育发展制造业新业态,开展工业大数据创新应用试点。促进大数据、云计算、工业互联网、3D打印、个性化定制等的融合集成,推动制造模式变革和工业转型升级。围绕落实《国务院关于积极推进“互联网+”行动的指导意见》,以加快新一代信息技术与工业深度融合为主线,以实施“互联网+制造业”和“互联网+中小微企业”为重点,以高速宽带网络基础设施和大数据等信息技术产业为支撑,积极培育新技术、新产品、新业态、新模式。集中资源重点培育和扶持一批龙头骨干企业,鼓励中小企业特色发展。组织实施“大数据产业支撑能力提升工程”,建立和完善大数据产业公共服务支撑体系,加快培育自主产业生态体系。
三是推动大数据标准体系建设。目前,工信部已经指导全国信息技术标准化委员会组建由130余家单位组成的大数据标准工作组,组织起草了《大数据标准化白皮书》,制定大数据标准体系,已经开展数据质量、数据安全、数据开放共享和交易等方面的多项国家标准的立项和研制工作,同时还要积极参与ISO/IEC、ITU等国际标准制定工作,与国际同步发展。
四是支持地方开展大数据产业发展和应用试点。目前工信部已支持和指导北京、上海、贵州、广州、陕西等地大数据产业和应用发展,这些地方先行先试,主动探索,已初见成效。如支持贵阳·贵安大数据产业集聚区创建工作,在出台产业扶持政策、开展数据共享交易、法律法规等方面成效显著。授予陕西省西咸区创建软件和信息服务(大数据)示范基地,鼓励当地大数据产业创新发展。北京、上海、广东等地方政府在支持大数据产业和应用发展等方面各具特色,走在全国前列。下一步,还将进一步动员和支持各地方、各行业、各部门开展大数据技术、产业、应用、政策等方面的探索和实践,利用相关项目资金,引导和支持在重点地区和工业等重点行业开展应用示范,并总结经验、加快推广。
五是加强大数据基础设施建设,探索和加强行业管理。结合工业和信息化部正在实施的“宽带中国”、“建设互联网强国”等战略,落实《关于数据中心建设布局的指导意见》,指导数据中心科学布局,加快推动宽带普及提速,提升互联网数据中心业务市场管理水平。同时还需从法规制度入手,加强行业管理和安全保障。研究制定网络数据采集、传输、存储、使用、管理的标准规范。加强对隐私信息保护、网络安全保障、跨境数据流动的管理,组织开展相关的专项检查和治理。推动和配合相关部门组织开展数据共享、开放、交易、安全等方面的立法研究工作。解决制约大数据产业发展的体制机制因素和不确定性的市场因素,为产业和应用发展营造良好的法规和市场环境。数据分析师培训
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29