
为什么说不懂数据思维和零售思维就不要从事零售业?
数据化管理做零售行业谁都离不开数据,我一直认为数据和科技是改变未来行业的两大主题。其中数据尤其重要,但是反过来看,不管是线上零售还是线下零售,对数据的重视程度是千差万别,特别是传统零售。数据思维和零售思维这块基本上很弱的。这就需要数据分析师来做了。
我说几个问题大家可以自测一下,看你们知不知道自己的数据:
1、你们知不知道这个月截止到现在为止,你们的店铺或者说你们区域VIP卡的贡献率是多少?
2、上周你负责的店铺和负责的区域或者你公司的退货率是多少?
3、上个月你的顾客的流失率是多少?
4、你的店铺销售团队的流失率是多少?
这四个数据如果你们能在30秒钟之内回答出来,证明你的数据化管理得不错。如果回答不出来,说明你的数据思维还比较偏弱。实际上这几个是我们平时不管是线上还是线下经常用到的数据,这些数据也许不是你本身工作内容,但是这些数据一定是每天的工作中,或者月会、周会上你经常听到的数据。回答不出来只说明当时你没有把他们”存储“下来。
如果这几个数据管理失效的话,会让你的绩效考核、团队管理、企业数据化管理失效等等。有很多的危害。
比如说VIP卡的管理,VIP卡的贡献率,我曾经遇到一个店铺,它一年销售两三千万,而其中62%的销量来源于同样一张VIP卡,做过零售的大概应该知道这里面的问题是什么。问题就是,大家都用同一张VIP卡。表面看上去没问题,大不了是店员刷点积分,年末拿点礼品,但是里面有天大的漏洞。
会员卡一般都有打折的功能,如果一个顾客是现金买的,但店员按打折之后的价格录入系统里面,这里面的差价就很有可能被店员吃掉了。如果你在企业里面不关注这个数据,有可能你的绩效考核失败,因为他从VIP卡里面拿到的差价就可能大于他通过绩效拿的奖金,这样他还会在乎你的目标?肯定不会。
刚才问大家的数据里的第二个数据是退货率。退货率表面上没什么关系,而实际上退货率仍然存在秘密。一些零售店铺的老手可以利用店铺在搞促销低价与正常售价之间的时间差,利用退货单来赚差价,细节我就不说了。这也会让你的绩效考核失效。
所以从这个方面来看,要想有数据化管理,首先是对数据的管理。首先把你平时常规要用到的一些指标、一些数据在你心中进行管理。像退货率你需不需要每天、每周、每月都去统计?看哪些店铺有异常,还有团队的流失率你不关心吗?
所以数据思维的第一步就是进行数据的基本管理,先得有数,这里面第一个要有数据意识,看到一些重要的数据要把它记下来,不管是记在头脑当中还是电脑里面,要有这种意识。同时也要求我们的店铺或者下属,或者我们的代理商(数据分析师)要实时准确客观地传递数据给你们,对企业来讲如果店铺没有实时管理这些数据,谈数据化管理就是白谈。
我前两天跟一个朋友聊天,他说他的企业要用大数据进行管理。我说你现在连数据都没有,怎么进行大数据管理?我们现在大多数传统零售暂时不需要大数据管理,我们现在只需要小数据管理。
大数据化不是说数据多就叫大数据,千万不要这样误解,是错的。而我们传统领域的数据往往都是小数据,离大数据还有很远的距离。特别是我们很多零售店铺连最基本的数据都没有,比如有的店铺某天做了10张单子,下班以后店长再把10张单子统一成一张单子录到系统里面,这样我没办法算出客单价和连带率,而这是零售店铺管理非常非常重要的指标。所以数据思维归根结底先得有数据,再去积累数据,最后把数据运用到业务中去,我们才能谈得上去做分析,去做绩效考核,去做管理。
养数据包括把现有的数据质量提高,或者是把有些目前看似无用的数据纳入数据库中去,第三是要有前瞻性养数据意识,提前布局。
做零售行业的应该都知道,就是那三个字:人、货、场。做零售的每个人都说,每天不说几次就好像OUT。这三个字能化解我们零售行业遇到的绝大多数的问题,遇到问题之后我们都从这个角度去做思考。比如说某个区域的客单价下降,对很多传统零售商来讲,他想到的是什么原因客单价下降,而不是主动去思索里面的逻辑。客单价可能跟商品有关,也可能跟人有关,也可能跟场有关,所以我们需要从人、货、场三个方面去思索客单价下降的原因是什么,才有找到背后的原因。而不是遇到一个数据出现问题,我们就去找答案,答案实际上是藏在逻辑里面。逻辑里面就是人、货、场。
回到刚才说的客单价的案例,跟人有关,第一个跟顾客有关,第二个跟店铺员工有关,这样就分成了两维。而这两维里面还可以细分,顾客可以分成新顾客、老顾客、会员顾客或者中端顾客、高端顾客、低端顾客,到底是哪些顾客在下降?这里面就需要数据分析,去做对比,这就是数据化思维和人、货、场的结合。第二个是员工,我们也分成老员工、新员工。是老员工的问题还是新员工的问题?货和场也可以都往下延伸。
我每次在给企业做(数据分析师培训)培训的时候,都会用一个案例,用人、货、场的思维逻辑建立一个评价体系,将男朋友转化成老公的评价体系。就看你能不能想到男朋友或者是老公跟哪些人有关,或跟哪些货有关,这里面的货难道是指的商品吗?肯定不是商品,是指的货币和未来的价值,这是货,所以人、货、场之所以被称为零售行业的基本思维模式,是因为它还可以扩大,还可以去延伸。
这是一张图,当我们发现店铺或者区域数据出现异常的时候,应该有怎样一种思维逻辑、思维方式。当我们发现店铺的数据出现异常,例如成交率下降以后,很多人的思维就是直接去找背后的原因,而不是先去梳理数据和逻辑,这样反而不容易找到背后的原因。所以我们去做零售思维的时候,一定要有逻辑。
继续用客单价来比喻,如果发现某个店铺的客单价异常,我们第一步要想这里面数据源是不是有问题,是不是算错了?如果建立在错误数据源基础上去找委托的原因,自然就是拍脑袋做无用功。比如客单价的数据上很有可能是去年团购拉高了客单价,今年没有团购客单价当然自然就下降了。这个时候你还得去找客单价下降的原因是不是就没有任何意义?
数据分析师遇到数据异常的先要看数据源是不是有问题,如果数据源没有问题,那么看同一个品牌下,A店铺如果客单价下降,我们要看同一品牌下面B店铺、C店铺、他们有没有客单价下降的情况,如果别的店铺也有客单价下降的情况,说明这是一个品牌共性的问题,而不是单单这一个店的问题,你就不能只找这一个店的毛病,去找整个公司或者区域的品牌出现了什么客单价的原因。
如果同一品牌下面别的店铺,或同一个城市的别的店铺没有这种客单价下降的原因,只有这个A店铺有客单价下降的原因,这个时候我们要过渡到第三步,要看本区域内其他对手有没有此问题,A品牌客单价下降了,同一个商场里面B品牌客单价有没有下降,C品牌有没有下降,D品牌有没有下降,如果整个区域里面大家的客单价都在下降的话,说明是整个区域出现问题了,而不是单单A品牌这个店的问题,思考问题的方式又不一样了。
如果说区域也没问题,就是A品牌在这个店有问题,竞争对手没问题,其他店铺也没有问题,这个时候才可以用人、货、场进行思考了。找到和人、货、场相关的一些数据进行分析,有没有人的问题,有没有货的问题,有没有场的问题,就回到刚才我们说的人、货、场的那种思维逻辑里面。
看趋势、看对比,最终找到问题产生的原因,这就是将零售思维和数据思维相结合的一个非常好的一张图片,你可以慢慢品尝这张图片。这张图片很强大的,当然有时候我们发现某个店铺的客单价出现问题,同时发现整个品牌也出现问题了,或者整个区域也出现这个问题了,也就意味着同时具有品牌共性和区域共性的问题。出现这种情况,那就说明一个问题,那就是市场出现了问题,那个时候就不是对一个店和一个品牌的问题,是整个大环境的问题,就需要用其他方法去解决。
无论是数据思维还是零售思维都需要花时间去练习,让他们变成一种思维习惯。cda数据分析师协会是专门培训数据分析师的,让你的能够更快的理解数据并解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30