
如何进行网站数据分析-理清网站分析的思路
如何进行网站数据分析?这是之前的分享流量时听众提的另一个问题,在这里把相应的内容整理一下。
下图是一个网站分析的生命周期示意图,在确认好分析需求并收集好我们所需要的数据后(强调一下,明确分析需求很重要,这可以避免为了分析而分析),我们就可以充分使用网站分析工具的各种报告对数据展开分析。
但网站分析工具中的数据量非常大,你可能一不小心就淹没在数据的海洋中,你得有一个明确的分析思路,知道要利用哪些报告或哪些报告视图才能帮助你快速找到问题的答案。以下是网站分析中涉及到的数据模块,这也提供了一个网站数据分析的大概思路。
根据上边的数据模块所涉及的内容,在网站分析报告中我一般会对下边所列出的板块与指标进行具体分析(以下列出的是在网站数据分析中一些我个人觉得比较重要的板块与指标,不同的网站重要的数据指标会有所不同):
基本情况:
网站的流量水平怎么样?与行业同类网站的数据相比,根据我们的市场定位,我们的流量在未来需要有多大的提升?
访客主要来自哪些地方?这用于确认与我们制定的市场策略是否匹配。如果有相当多的用户来自一些小语种的国家,我们是否要考虑建设多语言网站?
访客一般会通过什么样的设备对网站进行访问?在移动化越来越流行的今天,我们是否要建设自己的移动站点或开发我们的APP?
新老用户的比例怎么样?我们在拓展新用户的同时,是否能够留住老用户?
流量来源
网站的主要流量来源有哪些,SEO、SEM、EDM还是社交媒体?还有哪些类型的流量来源我们可以拓展?
这些流量来源的优先顺序是怎么样的,哪些是我们最倚重的流量来源,哪些流量来源的转换率最高?
SEO/SEM的流量水平怎么样,该如何去提升?
EDM、社交媒体的营销方式的使用情况怎么样,转换率如何?
网站内容
网站的页面分类有哪些?
产品页面、目录页面、营销专题页面等各类页面的流量以及转换表现(页面价值)情况怎么样?
网站上最常见的着陆页面有哪些?是否页面上的内容正是我们希望用户浏览到的内容?
用户的访问路径的引导是否存在问题,我们是否把用户引导到了主要的营销专题或产品页面?关于访问路径的分析可参考:可参考如何分析用户的访问转换路径。
用户是否与网站发生了我们期望的互动:参与活动、观看视频、下载、投票、订阅或下单?
产品销售情况
网站的订单转换率与客单价是多少?与行业水平是否有差距?
购物车转换漏斗数据怎么样,用户在哪一步的放弃率比较高,购物车的用户体验是否可以作优化?
哪一类的产品销售情况最好?
用户在购买前一般会访问多少次网站或要考虑多久才会下单?
要注意的是,在分析数据时如果发现有问题(比如购物车的转化率特别低)但又百思不得其解时,可以亲自去体验一下网站的访问流程,看一下在完成一个特定的目标或任务时是否存在障碍,也许你一下子就发现了问题的根源。
案例:
当你需要对网站进行一次全面的分析时,你可以按上边所列的内容对网站的各个数据模块系统地进行分析。但各个营销渠道的网站分析需求多种多样,不同的需求的分析方法也有所不同。而遇到渠道部门提交的一些指标数据异常的分析需求,我们可以灵活地进行处理。
以下是两个简单的案例。
问题1:一个电商网站日均销售为$80万,但某天突然下降为仅有$40万。
分析:
我们可以按照里边的内容一步一步作分析,把销售异常的根源找出来,但如果你对网站的业务运营情况非常熟悉,在这种突发情况下我们可以一针见血地找到问题的根源,从而得以快速修正问题恢复网站的正常销售。
还是按照我们习惯的思路来。我们都习惯了把销售与流量关联起来,当销售出问题时我们就会习惯性地去查看网站的流量情况。流量也下降了吗?关于流量的变化这里有两种可能:
流量也有一个相似幅度的下降=》流量来源出了问题?=》细分流量来源(SEO、CPC、EDM、用户所在区域)作分析=》页面流量分析(商品关注度是否有变化)
流量没有明显的下降è订单转换率出了问题?=》对产品的销售情况作分析,某些产品的转换率下降了还是几乎所有产品的转换率下降了?=》对产品的页面流量进行分析或对购物车转化路径作分析,是否是因为这部分转换率较高的产品的关注度下降了,还是网站的购买引导用户体验变差了,甚至是购物车系统在某一段时间不能访问?
从流量开始层层深入对数据进行分析,直至找到问题的根源为止。另外,在分析指标数据异常的时候,一些额外因素如特殊日子、重大事件、换季也要考虑在内,如“双11”别人者在如火如荼地在大搞促销,而你却没有一起去凑热闹,这段时间的销售有可能会变得较为惨淡。
问题2:EDM合作商给他们的北美地区的用户发送了50万封邮件(邮件链接里加了GA UTM标识),但对网站的销售增长却没有任何促进作用。
分析:
网站分析系统里来自EDM的流量数据有多少=》这部分流量来自哪些地区,真的是北美吗?=》这部分访客的访问路径怎么样,有没法有进入购物车=》最终有没有产生订单
分析结果显示,这期EDM的仅带来了少量流量,而且访客多是香港以及东南亚的,没有带来任何销售,看起来这个合作商并没有践行合约的内容,下次就不要再找他们合作了…
Google Analytics智能警报
另外,在分析网站指标数据异常的时候,建议充分使用好GA的智能警报功能,这个可以大幅减少你的网站的工作量。当数据出现异常的时候,它可以把异常的数据指标给你列出来,并会相应地列出数据异常的原因。
在GA中有两种类型的提醒:自定义提醒和自动提醒。自动提醒是Google Analytics根据其算法生成的提醒。也就是说,每天GA的智能引擎都会检查以下维度(包含但不限于)的指标值,以确认它们是否发生了显著变化:
所有流量
访客类型(新访客与回访者)
城市
地区
国家/地区
广告系列
关键字
来源
媒介
引荐路径
着陆页
退出页
点击率(AdWords)
除了自动提醒,你还可以设立自定义提醒来监控网站运营数据。你可以为任何一个指标设置提醒标准并应用到任何维度,甚至还可以把提醒应用到高级细分的访问群组中。我们可以把网站流量与销售的高峰与低谷设置为警报,这样当网站的主要指标出现异常时这些自定义提醒就可以通过邮件发送功能及时地通知到相关人员。目前只有自定义提醒功能可以使用邮件自动发送功能。
网站分析并没有固定的步骤和方法,当你非常熟悉网站分析工具的使用以及所要分析的网站的业务时,你可以完全不必拘泥于以上的所提到的思路与方法,但网站分析的目的必须要明确:减少成本,提升效益,分析后的优化工作不可缺失。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15