
物联网:通过平台、数据分析和可视化实现商业价值
在过去几年中,我沉浸在物联网(IoT)中,发现客户试图解决的问题非常具体,例如获得能源效益,早期故障检测或远程设备诊断及维修。决策由削减运营成本(OPEX)和节省资本开支(CAPEX)所驱动。
有了全部物联网设备生成的数据,强大的分析和可视化能力有助于做出准确决策并采取及时行动,从而实现这些重要的业务目标。当然,尽管这听起来很吸引人,却没那么简单。为了通过降低运营成本和/或资本开支实现有意义的价值,我们需要有效处理数据收集、分析、可视化和控制。没有这些基本的要素,我们无法利用物联网的力量。
下面是对这些关键要素和利用它们充分实施成功物联网解决方案的概述。
物联网数据之旅——从数据收集&分析到可视化&控制
数据是流动的,它的原生形式往往容易带来误解。物联网的真正挑战是,你有太多水龙头同时流出各种不同液体。在收集阶段,处理数据复杂性和变化性至关重要。没有在早期处理好这种复杂性,之后不可能实现最终业务成果。
例如,让我们考虑一个典型的商业建筑和该环境中的数据旅程。你可能会遇到来自不同生产商的不同子系统,例如暖通空调、电梯、安全、电力。第一步是尝试通过一个通用数据模型规范化来自所有这些子系统的数据,然后关注那些与试图解决的问题相关的数据。
在有效的物联网平台中,规范化后的数据被送入分析引擎,以添加解释数据的理解力。分析引擎由基于特定领域专业知识的规则搭建,为操作必需信息的可视化仪表板提供原料。然而缺少了行动的可视化不太有用。因此,修复是整体解决方案中重要的一部分。
在通常的物联网使用中,警报会指出需要采取的行动。但是有人需要在某个地方按下按钮而让行动发生。最佳物联网平台被设计的目的在于关闭这一循环。它们不仅允许手动操作,也有助于警报生成时自动化(或者半自动化)尽可能接近实时地修复问题。
物联网分析和可视化广泛应用的障碍
虽然分析/可视化的价值对物联网来说是巨大的,仍然有几个障碍存在,在开发解决方案时需要了解并克服它们。
数据采集是昂贵的
可以被采集的数据非常大量,而其中很多是无关的。在一栋楼中有非常多全然相异的专业设备。从这些系统中获取数据繁琐复杂,而且有时需要几种不同的工具。这可能变得昂贵。即使你能够收集数据,一些行业正在争论如何以一种通用方式命名和标识数据,使得分析应用可以轻松使用这些数据。
领域专业知识
为了从物联网中得到最多,组织必须有领域专家作为团队成员,致力于解决问题和实现具体的物联网目标。“能源官员”是许多公司中一个相对新的头衔,这样一个人确保有人关注物联网解决方案中的能源节约。
投资回报率(ROI)并不总是立竿见影
真实的投资回报率实现很慢。在与物联网客户合作时,这样的情况我看到过一次又一次。在建筑中,有些客户只看到当他们的物联网解决方案扩展到多个站点时的明显收益。投资回报率取决于业务,而且是应该准备好耐心等待的。
物联网市场上太多正在进行
由于物联网势头正劲,初创和老牌的公司都带着新平台、分析和可视化技术进入该领域。虽然有更多产品和服务的选择可能不错,但是也会令人困惑,难以选择构建强大物联网分析可视化解决方案所需的适当技术。
选择和开发一个鲁棒的物联网分析&可视化解决方案
下面是一些设计物联网解决方案需要注意的技巧。有可能还有几个其他的注意是想,但是在这篇文章中,我将概述这些在过去几年中见到的:
找出问题并设置目标
理解和辨别你确实希望用物联网解决方案解决什么是至关重要的。例如目标是每年节省哪里的运营成本和节省多少。这个目标对你的业务是独一无二的,并且是一个非常关键的开始。这也意味着你需要有领域专业知识以帮助解决问题。
确保智能数据收集
这是一个难点,需要多次迭代才能变好。尝试找出你需要的数据并保证数据收集的准确性。此外,数据需要可靠性和高性能。大多数情况下,数据需要收集自多个已经安装的系统。
选择合适的物联网平台
如果你知道目标,并且知道需要什么数据,选择合适的数据收集管理基础技术非常重要。下面是一些寻找物联网平台时的关键原则:
开放技术:由此你可以规范化来自成熟的专用设备和时新的边缘设备,构建应用程序并在需要的时候和第三方系统整合,无需更换平台或基础设施。API在这里发挥了关键的作用——为开发人员查找已发布的开放API。
鲁棒的生态系统:你可能想要通过自行构建所有应用征服世界,但是有了安卓和iOS,我们都了解应用生态系统的力量。你想要能够去选择。选择有围绕技术的开发者社区的平台。
可扩展的:虽然这取决于你的业务需求,我仍然建议选择一个可以扩展的平台。在多个平台上学习、管理和开发应用程序是困难的,而且成本过高。如果你的业务服务一个大型复杂的物联网基础设施,你应该为未来几年数以百万计的设备连接到web中做好计划。
准备实时和历史分析
根据业务,你可能需要为关键决定和任务准备实时数据或者只是用历史数据运行定期报告。传统分析方法并不适合利用物联网的巨大力量。在边缘(设备级)使用实时分析,并结合历史趋势分析非常重要。在下面的视频中,我谈到了什么使数据爆炸成为了物联网的好机会。
可行动的可视化
灵活性和与分析的集成对物联网数据可视化解决方案非常重要。可选范围从成熟的企业级商业智能(BI)可视化工具,能够处理复杂数据,到为非结构化数据复杂和简单可视化的新的云工具。我喜欢自助服务的可视化功能,这样我不需要永远等待别人创建报告。还要考虑移动用户需要什么——简单性是一大驱动力。可视化是关于如何以一种方式呈现数据,从而可以及时采取适当行动的一切。
一旦选定,安装和运行后,你将需要不断评估分析和可视化解决方案,并按需求做出改变。
结论
做那些最适合你的事情。没有固定的公式,每个企业都不同。找出你希望解决的具体问题,围绕它构建解决方案。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15