京公网安备 11010802034615号
经营许可证编号:京B2-20210330
互联网的创业者如何才能掘金大数据?
大数据能称之为一个时代,可见维克托•迈尔•舍恩伯格对大数据的褒奖。当然,更多的人希望通过大数据创建新的产业群,将之应用到医疗、教育、科技等多个领域。大数据应用已经成为互联网创业者竞争的新阵地,如何充分利用大数据和借助大数据掘金成为草根创业者关注的焦点。在已有的领域中,包括可穿戴设备、移动APP等领域,部分互联网创业者都尝到了大数据的甜头。
百度大数据助力小说网站顺利商业化
互联网创业者的机会并不少,但是要想真正“拥抱”大数据,并从大数据的红海中分一杯羹,是非常困难的。所有人都知道,大数据并不仅仅是“大”的数据,从B到PB、EB,也仅仅只是数字的变革,数据单位仅能记录数据罢了,互联网创业者要想利用到大数据,自身肯定是不具备物质条件的,依赖第三方是必不可少的,下面我就以百度大数据助力小说网站顺利实现商业化为例,来具体说说大数据:
百度推荐是基于百度大数据技术推出的网站内容推荐工具。通过对网站不同访客推荐个性化的内容,提高内容的点击率,大幅提升网站流量;机制是基于百度统计代码收集访客数据,基于百度搜索蜘蛛抓取网页内容精准匹配。
通俗来讲,通过百度大数据的挖掘与分析,能够精确地刻画出网站访客的人群画像。以小说网站为例,百度司南数据显示,88%的小说人群年龄分布在10-29岁之间,受众多为新生代年轻人。大多数小说受众还热衷于英雄联盟、穿越火线、地下城与勇士等网络游戏,小说爱好者往往也是网购爱好者。
对网站用户属性和爱好的把握,能够有效的帮助网站优化内容运营,缩短网站“内容↔用户”的路径,提升用户体验,并延伸或激发用户的需求,提高用户步长,从而提升网站的流量和商业价值。
不少小说网站迅速嗅到了百度大数据的商机。有数据显示,言情小说吧安装百度推荐小说专有样式后,流量增长11.9%,用户平均访问页面数提升17.8%。掌阅iReader运营总监周碧华表示,掌阅的短板是如何通过数据判断作品的质量,希望借助百度大数据解决这一难题。多酷总经理王超则认为,百度大数据能够帮助网站进一步挖掘付费用户,通过有效的数据分析来决定和平衡用户免费与收费策略。
从传统的搜索引擎到“即搜即得”(框计算)再到“不搜即得”(推荐引擎),百度运用大数据能力,用推荐将用户留在站内,让大数据更智能。在营收方面,百度网盟利用基于大数据的CTR(广告内容匹配)数据,让站长的平均收入提升70%。
当然,互联网并不是只有小说站这一垂直领域,教育、医疗等领域都是热门的创业领域之一。百度和小说网站的合作亦可以延伸到其他垂直行业甚至整个互联网,让更多的互联网创业者实现商业化。
如何玩转大数据?
互联网创业者要想获得完整的“大数据”是几无可能的,无论是广大的用户量,还是相对用户量长期的诉求,包括互联网创业者自身对数据的处理分析能力,都是其获得大数据的软肋,百度大数据正慢慢成为驱动互联网创业者成长的新动力。
从上面小说网站利用百度大数据进行获益的例子来看,互联网创业者该怎样才能更好的利用大数据呢?
首先,自身的内容是根本,这个和线下的产品相类似。用户享受的是服务、是产品,产品自身出现问题,用户肯定是不爱的。所以,无论是小说网站还是其他类型的网站,互联网创业者的根本都是需要有价值的内容输出,做用户的“好产品”,所以互联网创业者首先需要拥有产品思维。
其次,平台的开放性。我不认为某些半封闭的封闭会给本就是颤颤巍巍的互联网创业者很好的契机,而像百度联盟利用大数据能力为互联网创业者变现的方式,互联网创业者自身又可以和百度的其他产品进行互用,百度平台的开放性给予互联网创业者更大的舞台。
最后,商业化是关键。平台能提供给互联网创业者明晰的盈利模式是比较好的,远比互联网创业者自己去寻找盈利模式方便得多。在如今互联网产品“你像我,我像你”的年代,只有做好盈利才是最终的出路。即使能利用第三方大数据平台,若不能盈利,也终归会被“抄死”。
未来大数据会给互联网创业者带来怎样的机遇呢?百度大数据已经取得明显的成效,为互联网创业者前期对大数据预处理的时间、精力、财力等方面铺平道路。互联网创业者需要做的是,围绕大数据平台进行拓展,做出自己的特色产品。
医疗、教育、娱乐、移动APP等方向都可以是互联网创业者的机遇,问题是互联网创业者需要如何去拥抱这些大数据平台为己所用呢?所幸包括百度在内的多个大数据平台都是相对开放的,互联网创业者围绕产品自身再借用大数据平台以及其提供的盈利模式,整个产业群圆满完成,这才是互联网创业者应该做的事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20