
大数据时代,如何靠数据挣钱
大数据时代下,数据就如同矿石,如果能够充分挖掘并善加利用,大数据将会成为大财富。在很多情况下虽然大数据的价值还没得到充分证明,但分析人士指出这一市场正在扩大,越来越多的有经验的投资者希望能得到不为人知的独家数据。
目前已经有很多初创公司认识到了这一点,接下来本文将介绍三家利用大数据挣钱的初创公司:
Orbital Insight:分析卫星图像
Orbital Insight是一家通过分析卫星图像来获取和售卖数据的初创公司。其创始人James Crawford以前是谷歌的工程师,他可以在一些不可思议的地方看到商机,比如中国在建建筑的影子。通过卫星图观察中国地区在建建筑影子的变化,可以分析出中国建筑行业是在繁荣上升还是在萧条下降。投资商们渴望自己比竞争对手有哪怕那么一点点优势,能更多地掌握这些独家信息对他们非常重要。Orbital Insight目前正在分析中国30个城市的卫星图,为开发商们提供独家数据,从而使他们不再依靠政府提供的数据。
此外Orbital Insight还通过分析庄稼地的卫星图来预测庄稼的长势;分析停车场的数据来初步预测沃尔玛和家得宝等零售商的季度销售情况。
在本周二,Orbital公司对其预测系统做了首次测试。基于对罗斯百货停车场的历史数据分析,Orbital预测该公司在第三季度的销售额会好于预期。最终结果显示,罗斯百货的第三季度销售额为25.99亿美元,甚至高于Orbital预测的25.6亿美元以及分析家普遍预测的25.5亿美元。
James Crawford称其公司的首批用户包括几家价值几十亿美元的对冲基金公司,但谢绝透露他们的名字,以及他的收费标准。Orbital的早期投资商包括硅谷的风投公司Sequoia Capital,在接下来几周的下一轮融资中,Orbital希望能获得800万美元的资金。
波士顿大学卡罗尔管理学院经济学教授Ronnie Sadka认为,新类型数据固然会变得重要,但投资商们应该慎重选择。此外,调研企业TABB Group的资深分析师Paul Rowady说:“我将这归为实验目录,这些产品在表面上很让人震惊,但是要把他们转换成交易指标却是一个巨大的挑战”。比如前面提到的停车场数据分析,Orbital公司需要先从卫星公司购买一百万张卫星图像,然后建设计算机系统来从分析这些数据,从中得到可能的交易指标。
Dataminr:挖掘社交网络数据
Dataminr的三位创始人此前是耶鲁大学的室友,该公司依靠推特上每天的消息来获取数据来源。Dataminr每天要梳理5亿条推特信息,以求在正式媒体报道前得到市场变化的消息。
Dataminr提供的系统能将每条实时推特消息分类并去除垃圾消息,然后将其与最新的新闻消息、市场价格、天气情况以及其他的一些数据来对比分析这些消息的重要性。此外,该系统还能检测某个特定的用户过去在某个话题上是否可靠。
在今年的9月2日,独立记者Brian Krebs在推特上发消息称家得宝“可能会是信用卡违约的最新受害者”,Dataminr的系统立刻识别出这是一个对客户有价值的消息。随后,这一预警消息被传达给客户,包括60家银行和对冲基金公司。结果显示,其速度比财经新闻快了15分钟,而且该消息是在家得宝股票价格下降2%前被送达。
Premise:提供宏观经济数据
Premise旨在为世界各地的人们提供小量交易额信息,帮助他们观测产品价格,让公司提前了解通货膨胀率的变化和其他的一些经济指标。
很多时候真实的经济情况与官方的描述并不一样,Premise的宏观经济数据正是为了解决这一问题。“在世界的有些地方,人们没有关于经济情况的可靠信息来源,我们的目标是提高透明性”,Premise的首席执行官 David Soloff这样说道。
该公司的的数据大多是免费的,其用户包括一些金融公司。Premise目前在18个国家的68个城市有人来贡献数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29