
聚类算法之K均值
有时候,我们只有训练样本的特征,而对其类型一无所知。这种情况,我们只能让算法尝试在训练数据中寻找其内部的结构,试图将其类别挖掘出来。这种方式叫做无监督学习。由于这种方式通常是将样本中相似的样本聚集在一起,所以又叫聚类算法。本文,中颢润将介绍一种最常用的聚类算法:K均值聚类算法(K-Means)。
1、K均值聚类
K-Means算法思想简单,效果却很好,是最有名的聚类算法。聚类算法的步骤如下:
a:初始化K个样本作为初始聚类中心;
b:计算每个样本点到K个中心的距离,选择最近的中心作为其分类,直到所有样本点分类完毕;
c:分别计算K个类中所有样本的质心,作为新的中心点,完成一轮迭代。
通常的迭代结束条件为新的质心与之前的质心偏移值小于一个给定阈值。
下面给一个简单的例子来加深理解。如下图有4个样本点,坐标分别为A(-1,-1),B(1,-1),C(-1,1),D(1,1)。现在要将他们聚成2类,指定A、B作为初始聚类中心(聚类中心A0,B0),指定阈值0.1。K-Means迭代过程如下:
step 1.1:计算各样本距离聚类中心的距离:
样本A:d(A,A0) = 0;d(A,B0) = 2;因此样本A属于A0所在类;
样本B:d(B,A0) = 2;d(B,B0) = 0;因此样本B属于B0所在类;
样本C:d(C,A0) = 2;d(C,B0) = 2.8;;因此样本C属于A0所在类;
样本C:d(D,A0) =2.8; d(D,B0) = 2;;因此样本C属于B0所在类;
step 1.2:全部样本分类完毕,现在计算A0类(包含样本AC)和B0类(包含样本BD)的新的聚类中心:
A1 =(-1, 0); B1 = (1,0);
step 1.3:计算聚类中心的偏移值是否满足终止条件:
|A1-A0|= |(-1,0)-(-1,-1) | = |(0,1)| = 1 >0.1,因此继续迭代。
step 2.1:计算各样本距离聚类中心的距离:
样本A:d(A,A1) = 1;d(A,B1) = 2.2;因此样本A属于A1所在类;
样本B:d(B,A1) =2.2; d(B,B1) = 1;因此样本B属于B1所在类;
样本C:d(C,A1) = 1;d(C,B1) = 2.2;;因此样本C属于A1所在类;
样本D:d(D,A1) =2.2; d(D,B1) = 1;;因此样本C属于B1所在类;
step 2.2:全部样本分类完毕,现在计算A1类(包含样本AC)和B1类(包含样本BD)的新的聚类中心:
A2 =(-1, 0); B2 = (1,0);
step 2.3:计算聚类中心的偏移值是否满足终止条件:
|A2-A1|= |B2-B1| = 0 <0.1,因此迭代终止。
2、测试数据
下面这个测试数据有点类似SNS中的好友关系,假设是10个来自2个不同的圈子的同学的SNS聊天记录。显然,同一个圈子内的同学会有更密切的关系和互动。
数据如下所示,每一行代表一个好友关系。如第一行表示同学0与同学1的亲密程度为9(越高表示联系越密切)。
显然,这个数据中并没有告知我们这10个同学分别属于哪个圈子。因此我们的目标是使用K-Means聚类算法,将他们聚成2类。
[plain]view plaincopy
0 1 9
0 2 5
0 3 6
0 4 3
1 2 8
......
这个例子设计的很简单。我们使用上一篇文章中提到的关系矩阵,将其可视化出来,会看到如下结果:
这是个上三角矩阵,因为这个数据中认为好友关系是对称的。上图其实很快能发现,0,1,2,3,4用户紧密联系在一起,而5,6,7,8,9组成了另外一个圈子。
下面我们看看K-Means算法能否找出这个答案。
3、代码与分析
K-Means算法的Python代码如下:
[python]view plaincopy
# -*-coding: utf-8 -*-
frommatplotlib import pyplot
importscipy as sp
importnumpy as np
fromsklearn import svm
importmatplotlib.pyplot as plt
fromsklearn.cluster import KMeans
fromscipy import sparse
#数据读入
data =np.loadtxt('2.txt')
x_p =data[:, :2] # 取前2列
y_p =data[:, 2] # 取前2列
x =(sparse.csc_matrix((data[:,2], x_p.T)).astype(float))[:, :].todense()
nUser =x.shape[0]
#可视化矩阵
pyplot.imshow(x,interpolation='nearest')
pyplot.xlabel('用户')
pyplot.ylabel('用户')
pyplot.xticks(range(nUser))
pyplot.yticks(range(nUser))
pyplot.show()
#使用默认的K-Means算法
num_clusters= 2
clf =KMeans(n_clusters=num_clusters, n_init=1, verbose=1)
clf.fit(x)
print(clf.labels_)
#指定用户0与用户5作为初始化聚类中心
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23