京公网安备 11010802034615号
经营许可证编号:京B2-20210330
2016年哪些大数据预测不容错过?
2016年大数据领域会发生什么?考虑到如今在深层神经网络和规范性分析方面取得的进展,你可能觉得这个问题很好回答。而实际上,来自业界的大数据预测大不相同,下面就来看看到底哪些大数据预测值得关注。
1 数据平民崛起
甲骨文公司预测一种新型用户:数据平民(Data Civilian)会崛起。该公司称:“虽然复杂的数据统计可能仍依赖于数据科学家,但数据驱动的决策不会是这样。在未来一年,更简单的大数据发现工具让业务分析员可以寻找企业Hadoop集群中的数据集,将它们重新做成新的混搭组合,甚至运用探索性机器学习方法来分析它们。”
2 大数据会“消亡”
Nucleus Research公司公开发表了不同意见,预测我们所知道的大数据会消亡。该公司称:“在过去两年,每家公司及其人员似乎都推出了某种形式的大数据解决方案。是该告别新奇事物综合征(shiny object syndrome)的时候了。用户会像对待任何数据那样对待和访问大数据,而不是着手解决大数据分析这个既庞大又艰巨的任务。”
3 数据科学将大放光彩
数据科学咨询公司Profusion首席执行官Mike Weston预测,数据科学在银行界会大放光彩。他说:“金融业是率先采用数据科学技术和方法的行业之一。不过,所有银行服务公司采用数据科学的步调远远没有统一。2016年,预计这种局面会有所改变。更好地利用数据和服务个性化会从金融市场进入到零售银行领域。这会给市场营销、客户服务和产品开发带来深远影响。”
4 首席数据官成为“新宠儿”
Blazent 公司首席技术官办公室负责人Michael Ludwig认为,首席数据官(CDO)会成为信息技术领域的“新宠儿”,永远让办公室政治更显错综复杂。他表示:“正是由于大数据很复杂,又需要完整而准确的数据,首席数据官会变得越来越重要。因而,首席技术官和首席信息官需要给首席数据官让出地方,除非确立了明确界定的角色并成立了相关团队,否则高层管理团队中会出现紧张局势。”
5 合并兴起的关键年
许多人预计2016年大数据领域会出现激动人心的事情。Logi Analytics公司的解决方案工程和服务副总裁Charles Caldwell却不这么认为:“如果我展望2016年,并不觉得会出现许多激动人心的事情。其他厂商已给出了云计算、视觉分析和移动等方面的预测,但是那些大多是旧趋势。在我看来,2016年会是合并兴起和为下一大热门技术打基础的一年。”
6 大数据泄密事件频发
大数据领域的“沮丧的黛比”(Debbie Downer)奖授予了BlueTalon公司的首席执行官Eric Tilenius,因为他预测,大企业爆出大数据泄密事件的步伐可能会加快。他说:“2016年,缺乏统一的数据治理,可能会导致企业界迄今面临的最大的安全方面冲击,这相当于移动技术的问世给传统企业边界带来的冲击。依赖支离破碎的方法来控制数据访问,即面对不断变化的数据格局采用不一致的政策,只会在企业数据保护方面留下大漏洞。”
7 Hadoop将处于十字路口
2016年,Hadoop将处于十字路口,它会往哪个方向走?Altiscale公司的首席运营官Mike Maciag给出了他的预测:“2016年,我们会看到Hadoop行业标准得到巩固。2015年年初,我们看到开放数据平台计划(ODPi)正式启动,该计划制定了标准,为大数据生态系统的关键项目如何协同运行指明了方向。由于标准化给客户带来的好处变得更加显而易见,ODPi的成员数量在这一年翻番。我们预计,2016年Hadoop会得到更大的发展和认可,让新的技术和应用程序得以满足由ODPi制定的Hadoop生态系统标准。”
8 物联网2.0出现
Zebra Technologies公司预测:“我们会看到物联网2.0出现。物联网市场会由过去的闭源、专有的第一代解决方案,变成更成熟、基于行业标准、可灵活适应的解决方案。借助开源方法,企业组织能够从数量更多的服务提供商及其各自的API当中作一个选择。”
9 后稀缺经济日渐兴起
OpenText公司首席执行官Mark Barrenechea预测,物联网可能预示着后稀缺经济(post-scarcity economy)日渐兴起。他说:“可以将算法想象成这种应用程序,对物联网及我们生活中方方面面的数十亿个互联设备生成的彼此关联的海量信息进行大数据分析。拥有数据、分析数据、改进和创新成为企业成功的关键,而这一切得益于互联数字化社会。”
外包大行其道
大数据服务提供商Absolutdata公司首席执行官Anil Kaul预测,外包在2016年会大行其道。他说:“我们可以从大数据获得众多有价值的信息,可是访问这些信息颇具挑战性,而且通常不在平常的商业智能范围之内。如今许多公司在与第三方合作,制定并执行大数据分析策略。将外部专家整合到大数据团队中,也许是公司在这个迅速变化的领域保持领先一步的最佳途径。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23