
2016年哪些大数据预测不容错过?
2016年大数据领域会发生什么?考虑到如今在深层神经网络和规范性分析方面取得的进展,你可能觉得这个问题很好回答。而实际上,来自业界的大数据预测大不相同,下面就来看看到底哪些大数据预测值得关注。
1 数据平民崛起
甲骨文公司预测一种新型用户:数据平民(Data Civilian)会崛起。该公司称:“虽然复杂的数据统计可能仍依赖于数据科学家,但数据驱动的决策不会是这样。在未来一年,更简单的大数据发现工具让业务分析员可以寻找企业Hadoop集群中的数据集,将它们重新做成新的混搭组合,甚至运用探索性机器学习方法来分析它们。”
2 大数据会“消亡”
Nucleus Research公司公开发表了不同意见,预测我们所知道的大数据会消亡。该公司称:“在过去两年,每家公司及其人员似乎都推出了某种形式的大数据解决方案。是该告别新奇事物综合征(shiny object syndrome)的时候了。用户会像对待任何数据那样对待和访问大数据,而不是着手解决大数据分析这个既庞大又艰巨的任务。”
3 数据科学将大放光彩
数据科学咨询公司Profusion首席执行官Mike Weston预测,数据科学在银行界会大放光彩。他说:“金融业是率先采用数据科学技术和方法的行业之一。不过,所有银行服务公司采用数据科学的步调远远没有统一。2016年,预计这种局面会有所改变。更好地利用数据和服务个性化会从金融市场进入到零售银行领域。这会给市场营销、客户服务和产品开发带来深远影响。”
4 首席数据官成为“新宠儿”
Blazent 公司首席技术官办公室负责人Michael Ludwig认为,首席数据官(CDO)会成为信息技术领域的“新宠儿”,永远让办公室政治更显错综复杂。他表示:“正是由于大数据很复杂,又需要完整而准确的数据,首席数据官会变得越来越重要。因而,首席技术官和首席信息官需要给首席数据官让出地方,除非确立了明确界定的角色并成立了相关团队,否则高层管理团队中会出现紧张局势。”
5 合并兴起的关键年
许多人预计2016年大数据领域会出现激动人心的事情。Logi Analytics公司的解决方案工程和服务副总裁Charles Caldwell却不这么认为:“如果我展望2016年,并不觉得会出现许多激动人心的事情。其他厂商已给出了云计算、视觉分析和移动等方面的预测,但是那些大多是旧趋势。在我看来,2016年会是合并兴起和为下一大热门技术打基础的一年。”
6 大数据泄密事件频发
大数据领域的“沮丧的黛比”(Debbie Downer)奖授予了BlueTalon公司的首席执行官Eric Tilenius,因为他预测,大企业爆出大数据泄密事件的步伐可能会加快。他说:“2016年,缺乏统一的数据治理,可能会导致企业界迄今面临的最大的安全方面冲击,这相当于移动技术的问世给传统企业边界带来的冲击。依赖支离破碎的方法来控制数据访问,即面对不断变化的数据格局采用不一致的政策,只会在企业数据保护方面留下大漏洞。”
7 Hadoop将处于十字路口
2016年,Hadoop将处于十字路口,它会往哪个方向走?Altiscale公司的首席运营官Mike Maciag给出了他的预测:“2016年,我们会看到Hadoop行业标准得到巩固。2015年年初,我们看到开放数据平台计划(ODPi)正式启动,该计划制定了标准,为大数据生态系统的关键项目如何协同运行指明了方向。由于标准化给客户带来的好处变得更加显而易见,ODPi的成员数量在这一年翻番。我们预计,2016年Hadoop会得到更大的发展和认可,让新的技术和应用程序得以满足由ODPi制定的Hadoop生态系统标准。”
8 物联网2.0出现
Zebra Technologies公司预测:“我们会看到物联网2.0出现。物联网市场会由过去的闭源、专有的第一代解决方案,变成更成熟、基于行业标准、可灵活适应的解决方案。借助开源方法,企业组织能够从数量更多的服务提供商及其各自的API当中作一个选择。”
9 后稀缺经济日渐兴起
OpenText公司首席执行官Mark Barrenechea预测,物联网可能预示着后稀缺经济(post-scarcity economy)日渐兴起。他说:“可以将算法想象成这种应用程序,对物联网及我们生活中方方面面的数十亿个互联设备生成的彼此关联的海量信息进行大数据分析。拥有数据、分析数据、改进和创新成为企业成功的关键,而这一切得益于互联数字化社会。”
外包大行其道
大数据服务提供商Absolutdata公司首席执行官Anil Kaul预测,外包在2016年会大行其道。他说:“我们可以从大数据获得众多有价值的信息,可是访问这些信息颇具挑战性,而且通常不在平常的商业智能范围之内。如今许多公司在与第三方合作,制定并执行大数据分析策略。将外部专家整合到大数据团队中,也许是公司在这个迅速变化的领域保持领先一步的最佳途径。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18