
O2O与大数据引关注 互联网+商业地产如何寻求变革?
“O2O和大数据,是需要全行业共同面对、共同推进的。只有把全行业的链条打通,提升行业生态,才能真正实现商业地产O2O创新。”12月15日,北京万达(专题阅读)索菲特酒店,在以“‘共享经济’时代下的地产创变”为主题的2015中国房地产产业链主题年会暨第17届CIHAF中国住交会商业地产分会现场上,北京朝阳大悦城研策部副总监李英伟如是说。
过去的一年,线上巨头阿里开始布局线下,线下实体零售巨头万达也开始抢夺线上市场,一时间原本令人一头雾水的O2O成为街头巷尾的热词,大小零售商都积极布局自己的数据库、官方APP等。
但在当天的会议现场,多位业内大佬却提出了自建APP是一个“伪命题”的观点。
“互联网时代讲求开放,越开放越有价值。”阿里巴巴城市生活事业部、喵街智能商业副总裁苗峰指出,大平台、开放平台才是O2O的趋势。
“‘共享经济’时代下的地产创变”为主题的2015 中国房地产产业链主题年会暨第17 届CIHAF 中国住交会商业地产分会现场,商业地产O2O 和大数据的发展与未来引发关注。
打造生态开放平台
阿里喵街原本就是平台化模式的代表,强调合作共赢。而原本定位服务万达商业的自建平台飞凡网也表示定义将完全改变,从自建平台变为结合场景的“互联网 ”大平台。
“2015年11月底,我们有400万个APP用户,在所有渠道采集到的会员数据达到8500万,跟飞凡网达成合作关系的购物中心超过400家。我们不妨预言一下,优秀的自建平台都有可能在未来成为一个开放的大平台。”万达飞凡商业拓展副总经理冯舟表示。
越来越多的商家也意识到了分装APP没有效果。消费者今天使用下载明天就取消,大量闲置和试错后逐步开始意识到开放大平台的价值和意义。
大数据是流动的生态,越来越多的第三方大数据正逐步“松绑”,“第一方数据资源逐渐开始和第三方数据资源进行一些连接和整合,线下零售的大数据生态开始若隐若现地显现出来。”李英伟说,未来2~3年实体零售大数据生态的建立是非常深刻的趋势。
而在一年多O2O的尝试中,越来越多的从业者也发现O2O和大数据的主要目标是和人的链接,即给人带来多少价值,而不是给“楼”增加多少。
商业地产1.0阶段,市场可能更加关注具体的解决方案,比如怎么解决一些消费者在商场体验中的“痛点”,找车、定位、导航等;未来进入到2.0阶段,市场会更多考虑人的连接。“人实现连接以后,会进入第二个关键词——‘场景’。我们今天在做很多的尝试,O2O的创新实际上就是在创造更多与消费者互动和连接的场景。”李英伟表示。
李英伟预测,沿着连接的主线去增加各种各样的场景,这将是在明年甚至更长时间内O2O的创新举措。
提升线下整体经营水准
在这样的生态背景下,需要商家具备两个核心能力,首先是对大数据的理解,包括数据挖掘的能力;二是团队是不是真的具备互联网精神、互联网能力,因为无论多少平台、多好的应用,都需要团队有互联网的能力进行组合和应用。
更关键的是,商家要清楚,目前的生态系统变革下,不能指望APP或数据影响并破解困局。“尤其是甲方做事情容易陷入技术决定论,大家总是觉得我们只要有好的技术解决方案,好的技术供应商,很多的事情就可以解决,这是不对的,更多的时候还是要将重心放在团队能力的提高上,这才是最根本的。”李英伟进一步表示。
北京华润五彩城副总经理任东亮也认为,市场目前处在一个消费者换代的时代,过去传统地跟消费者互动的模式正在慢慢失效。未来利用数据技术去建立数据化的体系,是要建立在充分信息化的基础上。
更为核心的在于提升线下整体经营水准。“我认为互联网会加速线下的竞争,如果你的店面经营不行,上了互联网以后会加速死亡。”苗峰表示,互联网时代会放大线下实体的优势,也会放大它的劣势。所以无论是与喵街合作,还是与飞凡合作,实体店自身要变得很强大。
“如果商家的基础设施、管理团队、治理结构都没有准备好的话,去和阿里或者说是万达合作,是不能提高效率的。无论是喵街还是万达,最多可以帮你锦上添花,我不相信它可以雪中送炭,因为没有到这个时候。”苗峰坦言,“打铁还得自身硬”。
嘉宾观点:
O2O的小生态与大生态之辩
万达飞凡商业拓展副总经理 冯舟
购物中心和电商最核心的差异在于线上可能更加懂得消费者的需求,线下购物中心和百货商场对快速改变的消费者的内心需求把握不够精准,不够迅速。
飞凡的定位是“实体商业 互联网”的场景运营商,为购物中心提供智能软硬件的解决方案、WIFI等,可以覆盖购物中心、商超等全部业态。非凡要做的是一个结合场景与人的“互联网 ”大平台。未来优秀的自建平台都有可能在未来成为一个开放的大平台。飞凡还有一个有亮点的产品是全球招商平台,即把全球优质的商户资源和商业地产资源放在一个开放的平台上,使彼此在这个平台上完成有序、良性的交易。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04