
用好大数据,不惟大数据
面对渐行渐劲的大数据,如何做到科学运用,成为一道充满挑战但也颇具魅力的命题。
大数据者,全量数据也,“量大”是其核心。大数据正在深刻改变人们对世界的认知方式,言其要者有三:
一则,海量数据中,有的模糊有的精确,有的可计量能计算有的则不然,但这些都不影响“全量数据”的本质。因其全故能成其事——人们不必再像以往那样,非要挖空心思觅参数、定算法、建模型,以便完成“由部分推测全部”的艰苦过程,因为所有数据都已了然于胸,随手可拈。
二则,大数据时代里,你我他的一言一行都可能登簿入册。当“信息孤岛”加速消失、举手投足皆有记录,你会发现,以往的浑水摸鱼越来越难,“透明人”、“讲规矩”、“守信用”的舞台却越发宽广。对监管者、服务者和市场主体而言,透明可视、效率极高的大数据,是一次全新考试。
三则,大数据带来了需求与供给对接方式的变化,这一点,或许最具方向性和决定性意义。有些表现为“减少盲目,精准对接”,打车软件和网上就医是这方面的代表。有些表现为“告别落后,与时俱进”。比如,在简政放权过程中,过去以现场为主的服务方式、以抽查为主的监管方式,早已无法适应大数据时代需要和人民群众诉求。这时,“互联网+”、大数据便大有可为。
大数据优点多多,但有时却被其他因素紧紧捂在身下,不得施展。因此,我们要努力创造条件,让大数据充分涌流并真正发挥作用。
以大数据运用比较深入的足球领域为例,中国女足之所以能在今年世界杯上时隔多年再进八强,大数据起了关键作用——它使女足训练计量化、清晰化,为教练组提供了非常有价值的参考。然而,队内专门请来的数据分析师也坦言,我们与德国等大数据“领军者”根本没法比。新华社记者采访时发现,目前女足训练时,只有一少半球员能穿上数据采集背心。为什么?100多万元的装备太贵且属于政府采购,年度预算控制很严,所以不能马上落实。
大数据“无所不包”,却未必万能——在其初试啼音的当下,清醒务实的态度尤为重要。
清醒务实,意味着再海量的数据也不可能“无所不包”。辩证唯物主义基本原理表明,世界及其规律是人们可以认知的,但又是永远认知不完的。对海量数据,不能为其所累,而要主动驾驭,为我所用。主动与被动的辩证法,在大数据时代不但没有消退,反而愈加重要。
清醒务实,意味着再海量的数据也不可能“包打天下”。纵观人类社会发展史,技术、制度和道德理念,是3个不可或缺又不能互相替代的社会要素。换句话讲,仅有技术进步,还远远不够。
具体到大数据这件事上,我们注意到,6月17日召开的国务院第95次常务会议,审议通过了《关于运用大数据加强对市场主体服务和监管的若干意见》。国家发展改革委负责人在解读该《意见》时,特地强调了制度建设——事前信用承诺制度、产品信息溯源制度、网络经营者身份标识制度……
不过,在运用大数据构建以信用为核心的新型市场监管机制过程中,道德理念的作用会更加凸显。再高级的技术也难免存在缺陷,再严密的机制也难言禁绝漏洞。因此,加快形成褒扬诚信的正面导向,使更多市场主体自觉践行诚信、主动抵制失信,并让诚实守信者更多受益,才是管根本管长远的好办法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04