
大数据仍然离不开人的赋予
大数据意义重大,这是毋庸置疑的一件事,但最终当我们真正弄清楚如何充分利用大数据时,也许它并没有开始认为的那么了不起。现在的我们处于一个比较混乱的中间时段,一方面我们认识到了这些数据的价值,而另一方面大多数组织机构和政府并不知道如何利用这些数据以充分发挥其作用。
在最近一期的《经济学人》,有两篇文章描述了大数据发展的现状。首先我们要说的是《打破常规》( Out of the box )这篇文章,该文谈到开放数据的承诺,这个承诺到现在仍未实现。文章认为,开放数据不仅可以促进透明度的提升,还可以作为一个商业创新的平台,它在一些公司的作用便是如此,如 Zillow 和 Garmin,后两者分别是基于公开的房地产数据和基于 GPS 技术的公司。
该文章称,在美国政府数据共享网站 Data.gov 上,一共发布了来自 170 个数据源的 20 万个数据集。所有这些数据不仅让创业公司能够蓬勃发展,那些向公众开放的信息也让公民和监管机构可以更好地进行监管并根除腐败。不过,虽然作者在文章中谈到公开数据的很多好处,但同时也承认我们离真正了解这些数据能做什么还差一步,并且我们需要更多的公开数据,以便让这些数据真正发挥出它们的作用。
在同一期的《经济学人》杂志上还有另一篇关于大数据的文章,这篇名为《德国发展数字化吗?》( Does Deutschland do digital? )的文章谈论了制造业的无常性以及德国能否跟上变化的问题。由传感器和物联网所推动的新兴浪潮正迫使那些传统的德国制造商向软件和数据公司转型,在后者的领域里,由传感器产生的数据可能比机器本身更有价值。
在《经济学人》发行的纸质版中,这两篇文章中间仅隔了一页,它们用不同的方式展现出现如今我们对于大数据所感到的困惑。这就好比我们意识到存在着某物,我们也知道它的重要性,但就是找不到充分利用它的方式。
数据不是孤立的
也许原因在于我们太相信能用技术手段解决我们的各种问题。我们一直相信大数据可以帮助企业做出更明智的决策。在医疗保健领域,它可以帮助我们的医生和医疗专业人士更好地进行诊断并且找到最合适的治疗方法。在体育运动领域,它可以帮助我们最喜欢的球队挑选出最好的球员。在政府方面,通过开放信息,能够让政府的透明度提升到承诺高度,贪污腐败的政府官员将无所遁形。此外,大数据还有助于发现潜在的罪犯。
从巴黎最近发生的恐怖袭击可以看出,有时候并不是我们收集信息多寡的问题。正如娜塔莎·洛马斯(Natasha Lomas)在袭击发生后 为 TechCrunch 所写的一篇文章所说 ,也许事件的发生不仅仅与数据有关。也许有关系的是人们如何处理这些数据:
另一个残酷的政治真相是,有效的反恐政策需要在当地实体资源上花钱——向各地派出更多的政府特工 ,融入 当地社区,让他们在那里获取人们的信任并收集情报。
我认为洛马斯是触动到了一些东西。我们觉得科技是问题的答案,但其实它只是人类手中的一个工具。看过《法律与秩序》剧集的人就会知道,虽然在犯罪现场你可以获得 DNA 证据,但是身为警探仍然必须辛勤工作,找到这些数据所指向的人。如果没有人去连结这些信息点,那么这些数据也就没有用处。
这一点同样适用于大规模的政府监控。当然你可以收集到任何你想要的数据,但如果缺少传统方式的检测来帮助人们去理解这些数据,人们会很难知晓其中的意义。
无论是阻止恐怖袭击,还是为找到跟隔壁企业竞争的最好方法,无不是如此。数据是中立的。只有你知道如何将这些数据联系在一起,否则它对你而言没有帮助。虽然计算机可以帮人们更快地搜集和处理数据,但是不管我们自己信不信,要让计算机为我们从数据中提取意义还有很长的一段路要走。
人机合作
麻省理工学院教授安德鲁·麦克菲(AndrewMcAfee)和艾瑞克·布林约夫森(Erik Brynjolfsson)在他们合著的《第二次机器革命》( The Second Machine Age )中讲述了一个关于 IBM 计算机深蓝的故事, 1997 年深蓝在比赛中击败了当时世界上最好的人类国际象棋手 。2005 年,一组业余的国际象棋选手在三台计算机的帮助下,击败了这台击败过世界上最好棋手的机器。
这件事表明,作为一种工具,技术可以被人们用来提高自身能力,并且充分发挥出计算机和技术的作用,这些都是我们自己创造的机器和技术。如果你对此有所怀疑,可以参考美国国防部的想法,他们差不多就是按照这个思路认为未来最有效的战争策略是 人类部队与机器的联合 。
尽管科技进步的演变速度正变得越来越快,但我们对于自身技术的先进性仍然存在高估。很显然,对于所收集数据的理解仍然离不开人的帮助。
如果我们可以高效地完成这个任务,最终这些数据会让我们人类变得更聪明,让我们生活得更安全和更健康。我们只需记住数据是我们达到目的的一种手段,而不是目的本身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04