京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据仍然离不开人的赋予
大数据意义重大,这是毋庸置疑的一件事,但最终当我们真正弄清楚如何充分利用大数据时,也许它并没有开始认为的那么了不起。现在的我们处于一个比较混乱的中间时段,一方面我们认识到了这些数据的价值,而另一方面大多数组织机构和政府并不知道如何利用这些数据以充分发挥其作用。
在最近一期的《经济学人》,有两篇文章描述了大数据发展的现状。首先我们要说的是《打破常规》( Out of the box )这篇文章,该文谈到开放数据的承诺,这个承诺到现在仍未实现。文章认为,开放数据不仅可以促进透明度的提升,还可以作为一个商业创新的平台,它在一些公司的作用便是如此,如 Zillow 和 Garmin,后两者分别是基于公开的房地产数据和基于 GPS 技术的公司。
该文章称,在美国政府数据共享网站 Data.gov 上,一共发布了来自 170 个数据源的 20 万个数据集。所有这些数据不仅让创业公司能够蓬勃发展,那些向公众开放的信息也让公民和监管机构可以更好地进行监管并根除腐败。不过,虽然作者在文章中谈到公开数据的很多好处,但同时也承认我们离真正了解这些数据能做什么还差一步,并且我们需要更多的公开数据,以便让这些数据真正发挥出它们的作用。
在同一期的《经济学人》杂志上还有另一篇关于大数据的文章,这篇名为《德国发展数字化吗?》( Does Deutschland do digital? )的文章谈论了制造业的无常性以及德国能否跟上变化的问题。由传感器和物联网所推动的新兴浪潮正迫使那些传统的德国制造商向软件和数据公司转型,在后者的领域里,由传感器产生的数据可能比机器本身更有价值。
在《经济学人》发行的纸质版中,这两篇文章中间仅隔了一页,它们用不同的方式展现出现如今我们对于大数据所感到的困惑。这就好比我们意识到存在着某物,我们也知道它的重要性,但就是找不到充分利用它的方式。
数据不是孤立的
也许原因在于我们太相信能用技术手段解决我们的各种问题。我们一直相信大数据可以帮助企业做出更明智的决策。在医疗保健领域,它可以帮助我们的医生和医疗专业人士更好地进行诊断并且找到最合适的治疗方法。在体育运动领域,它可以帮助我们最喜欢的球队挑选出最好的球员。在政府方面,通过开放信息,能够让政府的透明度提升到承诺高度,贪污腐败的政府官员将无所遁形。此外,大数据还有助于发现潜在的罪犯。
从巴黎最近发生的恐怖袭击可以看出,有时候并不是我们收集信息多寡的问题。正如娜塔莎·洛马斯(Natasha Lomas)在袭击发生后 为 TechCrunch 所写的一篇文章所说 ,也许事件的发生不仅仅与数据有关。也许有关系的是人们如何处理这些数据:
另一个残酷的政治真相是,有效的反恐政策需要在当地实体资源上花钱——向各地派出更多的政府特工 ,融入 当地社区,让他们在那里获取人们的信任并收集情报。
我认为洛马斯是触动到了一些东西。我们觉得科技是问题的答案,但其实它只是人类手中的一个工具。看过《法律与秩序》剧集的人就会知道,虽然在犯罪现场你可以获得 DNA 证据,但是身为警探仍然必须辛勤工作,找到这些数据所指向的人。如果没有人去连结这些信息点,那么这些数据也就没有用处。
这一点同样适用于大规模的政府监控。当然你可以收集到任何你想要的数据,但如果缺少传统方式的检测来帮助人们去理解这些数据,人们会很难知晓其中的意义。
无论是阻止恐怖袭击,还是为找到跟隔壁企业竞争的最好方法,无不是如此。数据是中立的。只有你知道如何将这些数据联系在一起,否则它对你而言没有帮助。虽然计算机可以帮人们更快地搜集和处理数据,但是不管我们自己信不信,要让计算机为我们从数据中提取意义还有很长的一段路要走。
人机合作
麻省理工学院教授安德鲁·麦克菲(AndrewMcAfee)和艾瑞克·布林约夫森(Erik Brynjolfsson)在他们合著的《第二次机器革命》( The Second Machine Age )中讲述了一个关于 IBM 计算机深蓝的故事, 1997 年深蓝在比赛中击败了当时世界上最好的人类国际象棋手 。2005 年,一组业余的国际象棋选手在三台计算机的帮助下,击败了这台击败过世界上最好棋手的机器。
这件事表明,作为一种工具,技术可以被人们用来提高自身能力,并且充分发挥出计算机和技术的作用,这些都是我们自己创造的机器和技术。如果你对此有所怀疑,可以参考美国国防部的想法,他们差不多就是按照这个思路认为未来最有效的战争策略是 人类部队与机器的联合 。
尽管科技进步的演变速度正变得越来越快,但我们对于自身技术的先进性仍然存在高估。很显然,对于所收集数据的理解仍然离不开人的帮助。
如果我们可以高效地完成这个任务,最终这些数据会让我们人类变得更聪明,让我们生活得更安全和更健康。我们只需记住数据是我们达到目的的一种手段,而不是目的本身。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23