京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据大规律
大数据正在改变我们的生活,影响我们思考和解决问题的方式,为了适应时代的潮流,组织必须学会用数据说话,如果坐拥大量的数据却束手无策或无动于衷,那和没有数据是一样的。但是,在进行数据分析时,完全的自我创造是不可取的,因为有大量可以遵循和借鉴的经验能节约大量的时间和成本。最近, OrionX.net 的联合创始人Shahin Khan 就发表了一篇文章,介绍了他的 团队从大数据、物联网和云计算市场上总结的经验和规律 。
保留数据的成本要比删除数据的成本低。另外,还要有多个备份。正因为保留了足够多的数据,大数据才成为可能,因此无论如何都不要删除数据,因为你不知道什么时候会用到它,删除这些数据会有哪些法律风险。保留数据的成本很低,另外,如果将来发生了什么事情,你也能从这些数据中找到证据。
无论开始收集数据的动机是什么,它们都会导致你收集更多的数据。大部分数据收集工作关注于正在进行的活动,但一旦知道了如何使用这些数据,获取更多数据的意愿就会增加。
大数据系统开始较小,但慢慢会变大,没有中间大小。很少有中等规模的大数据系统,一旦某个项目的理念被证明是有前景的,那么它很快就会变大,并在迅速发展的同时孵化新项目。
数据必须流向有价值的地方,要考虑功能的上下文有什么价值。未使用的数据是一种闲置的资产,很有可能会造成价值的贬值。如果将大数据看做是工作流,那么必须将数据流向最有价值的地方。
永远都不要假设你知道原因是什么,有什么影响。大数据的大部分应用场景都是有价值的,值得付出努力,但是它的因果关系非常复杂,数据的不完整、用户的偏见不可避免。
有关数据与无关数据之间的比率将逐渐趋向于零。数据有很多,但通常情况下大部分都是无用的,只有一少部分有价值。收集的数据越多,这种现象越明显,也就是说无关数据的增长速度要远高于相关数据的增长速度。
分析的最终目的是合成。分析完成之后便需要合成,当然这需要引入机器学习和认知算法。
时间=金钱=数据。数据是一种资产,虽然它可以升值,但大多数时候随着新数据替代老数据,历史数据的价值会越来越低,因为它的相关性会越来越差。所以必须知道数据的“利率”,知道它贬值的速度有多快。
容量大—速度快—种类多—价值密度低 vs. 不可再现—不相关—不完整—不正确。数据的质量直接影响数据挖掘的质量。
给你足够的数据,你就能证明事物的“正反两面”。数据量越大,从中找到有价值信息的难度就越大,数据的复杂性、不合理的动机和无知都可能会造成无效的结论;但另一方面,数据越多,支持假设的证据就会越充分,通过完全科学的方法,有时这种支持率甚至会逐渐接近100%。
大数据的结论开始通常是有趣但无用的,但最终会变成有效且有用的。在新媒体时代,有趣但肤浅的内容要比深刻有见地的内容多得多,价值挖掘需要对数据有深刻的理解,但这需要时间。
随着数据量的增长,大数据和 高性能计算(HPC) 需要结合在一起。
如果有200行数据,可以使用电子表格;但如果有20亿行数据,就必须使用HPC。此外,随着数据量的增长,还需要数学和科学的知识将数据转换成模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16