
数据分析技术播种智慧农业
在美国,有五分之一的农民在使用实时数据分析技术,以期将农业转变为更为精确的科学。
他们利用这一技术耕耘未来,以更好地满足世界不断增长的粮食需求。而预计,2050年,全球对于粮食的需求将增长至现在的两倍。对此,来自密歇根州的26岁农夫Jesse Vollmar谈到:“我们不仅无法再得到更多的农田,每年我们都还在失去农田,因此我们必须依靠大数据实时分析的技术。”
Vollmar生长在家族五代经营的农场上,因此,他能够在第一时间就了解到一年又一年发生的众多的变数和风险在不断地激怒农民。变幻莫测的天气和土壤条件使农业种植成为一种难得的机遇而不是稳赢。“我的家族耕种经历使我对于如何在世界上创造新价值这件事产生了更多的看法。”Vollmar说。
在Vollmar小的时候便对信息技术产生了兴趣。他认为这项技术对于农民而言可谓是个基本的工具。 于是,在2012年,他便参与创办了数据分析公司FarmLogs。在短短三年时间里,超过20%的美国农场(约6万多农户)都在使用FarmLogs。
“在这个时代,耕作真的在改变,” Vollmar说,“这个行业的下一个巨大转型将来自于数据科学。因此,我们需要将全球获取到的新信息应用在农业上,以帮助农民实现每英亩农场的收益最大化。”
Vollmar认为如今的数据中心技术能够帮助他实现几年前离开超级计算资源就实现不了的事情,例如,借助IT技术,农民们已经可以观察到每寸土地,从而做到因地制宜。
英特尔数据中心事业部副总裁Jason Waxman说,“农业与金融服务、医疗、交通、制造等其他行业一样,将正确的数据运用到决策过程中的能力对于管理农业经营来说十分重要。”
“摩尔定律加速了计算和存储技术在性能和可支付能力方面的发展,” Waxman说,“因此,存储和分析大量实时信息的能力为各行业的分析结果带来了突破。”
Waxman认为数据分析产生的洞察可以帮助人们作出明智的决定,不仅能够使企业保持敏捷性、创造性、高效性,也能更好地满足用户的需求。如今,越来越多的人利用互联网和移动设备去管理他们的生活。在零售行业,借助实时的数据分析,零售商就可以确保他们在合适的时间有一定的产品库存。
根据2014年IDG企业大数据的研究报告,如今的企业多半都已经推行或在计划推行高级的分析计划。对此,Waxman认为:“技术正在帮助人们将创意带入生活中,并对企业和社会有益带来益处。”
FarmLogs将分别从公共数据和安置在农场设备的传感器上获得的信息收集起来,使用高端计算技术搭载的软件算法来分析,实现了将来自于农田的实时数据到互联网的传送。
对土壤、降雨量等其他实地测量情况和数据分析,可以帮助农民在任何时间、任何终端,如通过电脑、平板电脑或智能手机调配资源。
“农田的实时情况在过去是无法被农民所获取的,” Vollmar说,“但如今,他们可以实时看见农场发生的一切,如作物的收割、生长与营养状况。”
农业领域将这种方法称为“精耕细作”。Markets and Markets发布的一份报告显示,这项技术预计在2020年将在软件和服务市场创造17.7亿美金的财富,这意味着这项技术从2014年至2020年的复合年均增长率约为15.1%。
Vollmar认为,这项技术可以帮助农民在种植的过程中使用更少的资源。而对于同加利福尼亚州一样被干旱持续困扰
多年的地区是非常重要的。
“在种植庄稼过程中,水是重要的因素之一,” Vollmar在今年4月对福克斯商业新闻说,“这项技术的其中一个特性可以帮助农民监测全国范围内的农田,并且实时获得更精准和清晰的数据。”
而拥有更好的技术有利于农民针对何时灌溉农田做出明智决定。”农民可以看到每块地的累积雨量,而不必亲自开车去检查。
“他们可以更有效地控制运营和物流,甚至可以评估新的养殖场以及根据10年内降雨量情况来判断该农场的生产力,”Vollmar分享道:“FarmLogs已经分析了几乎全美的高分辨率、多光谱图像,允许他们在一个5×5米大图的基础上来衡量农民所种植的农作物是如何在过去五年的生长季节里的健康状况。这将创建一个基准线来帮助农民了解和量化发生的变化,并基于FarmLog的建议做出决定。
“有了这些数据,我们不仅能够帮助他们将资源转移到需要的农场从而充分利用每寸土地,还可以就观察到的农田变化该如何平衡基线进行季度监测,”他说:“通过更快的应对问题帮助消除农民产量损失。”
除了提供基于数据分析的决策建议,FarmLogs还可以帮助农民在收割的时候实现日常任务的自动化。“我们能够为拖拉机做相应的变成,并使它根据土壤调整种子的播种,”Vollmar介绍道:“这有助于农民对农田正在发生的事情做出及时的反应。”
对于Vollmar而言,一切都始于数据。大多数情况下,农民必须少依赖直觉而更多依赖数据来做出明智的决定。“我们不断地挑战现状,并思考如何通过技术实现更高的农场生产率和效率,” Vollmar说,“我们希望能够解决我们的星球所面临的巨大挑战。”在这个系列中,iQ探索全新的利用信息的方式来充实我们自身、环境和身边的人们。我们关注从智能手表和智慧城市收集的数据,是如何通过大数据而带来更好的生活。想要了解更多关于大数据和高性能计算技术,如内存分析和Intel Xeon处理器请访问
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22