
数据分析技术播种智慧农业
在美国,有五分之一的农民在使用实时数据分析技术,以期将农业转变为更为精确的科学。
他们利用这一技术耕耘未来,以更好地满足世界不断增长的粮食需求。而预计,2050年,全球对于粮食的需求将增长至现在的两倍。对此,来自密歇根州的26岁农夫Jesse Vollmar谈到:“我们不仅无法再得到更多的农田,每年我们都还在失去农田,因此我们必须依靠大数据实时分析的技术。”
Vollmar生长在家族五代经营的农场上,因此,他能够在第一时间就了解到一年又一年发生的众多的变数和风险在不断地激怒农民。变幻莫测的天气和土壤条件使农业种植成为一种难得的机遇而不是稳赢。“我的家族耕种经历使我对于如何在世界上创造新价值这件事产生了更多的看法。”Vollmar说。
在Vollmar小的时候便对信息技术产生了兴趣。他认为这项技术对于农民而言可谓是个基本的工具。 于是,在2012年,他便参与创办了数据分析公司FarmLogs。在短短三年时间里,超过20%的美国农场(约6万多农户)都在使用FarmLogs。
“在这个时代,耕作真的在改变,” Vollmar说,“这个行业的下一个巨大转型将来自于数据科学。因此,我们需要将全球获取到的新信息应用在农业上,以帮助农民实现每英亩农场的收益最大化。”
Vollmar认为如今的数据中心技术能够帮助他实现几年前离开超级计算资源就实现不了的事情,例如,借助IT技术,农民们已经可以观察到每寸土地,从而做到因地制宜。
英特尔数据中心事业部副总裁Jason Waxman说,“农业与金融服务、医疗、交通、制造等其他行业一样,将正确的数据运用到决策过程中的能力对于管理农业经营来说十分重要。”
“摩尔定律加速了计算和存储技术在性能和可支付能力方面的发展,” Waxman说,“因此,存储和分析大量实时信息的能力为各行业的分析结果带来了突破。”
Waxman认为数据分析产生的洞察可以帮助人们作出明智的决定,不仅能够使企业保持敏捷性、创造性、高效性,也能更好地满足用户的需求。如今,越来越多的人利用互联网和移动设备去管理他们的生活。在零售行业,借助实时的数据分析,零售商就可以确保他们在合适的时间有一定的产品库存。
根据2014年IDG企业大数据的研究报告,如今的企业多半都已经推行或在计划推行高级的分析计划。对此,Waxman认为:“技术正在帮助人们将创意带入生活中,并对企业和社会有益带来益处。”
FarmLogs将分别从公共数据和安置在农场设备的传感器上获得的信息收集起来,使用高端计算技术搭载的软件算法来分析,实现了将来自于农田的实时数据到互联网的传送。
对土壤、降雨量等其他实地测量情况和数据分析,可以帮助农民在任何时间、任何终端,如通过电脑、平板电脑或智能手机调配资源。
“农田的实时情况在过去是无法被农民所获取的,” Vollmar说,“但如今,他们可以实时看见农场发生的一切,如作物的收割、生长与营养状况。”
农业领域将这种方法称为“精耕细作”。Markets and Markets发布的一份报告显示,这项技术预计在2020年将在软件和服务市场创造17.7亿美金的财富,这意味着这项技术从2014年至2020年的复合年均增长率约为15.1%。
Vollmar认为,这项技术可以帮助农民在种植的过程中使用更少的资源。而对于同加利福尼亚州一样被干旱持续困扰
多年的地区是非常重要的。
“在种植庄稼过程中,水是重要的因素之一,” Vollmar在今年4月对福克斯商业新闻说,“这项技术的其中一个特性可以帮助农民监测全国范围内的农田,并且实时获得更精准和清晰的数据。”
而拥有更好的技术有利于农民针对何时灌溉农田做出明智决定。”农民可以看到每块地的累积雨量,而不必亲自开车去检查。
“他们可以更有效地控制运营和物流,甚至可以评估新的养殖场以及根据10年内降雨量情况来判断该农场的生产力,”Vollmar分享道:“FarmLogs已经分析了几乎全美的高分辨率、多光谱图像,允许他们在一个5×5米大图的基础上来衡量农民所种植的农作物是如何在过去五年的生长季节里的健康状况。这将创建一个基准线来帮助农民了解和量化发生的变化,并基于FarmLog的建议做出决定。
“有了这些数据,我们不仅能够帮助他们将资源转移到需要的农场从而充分利用每寸土地,还可以就观察到的农田变化该如何平衡基线进行季度监测,”他说:“通过更快的应对问题帮助消除农民产量损失。”
除了提供基于数据分析的决策建议,FarmLogs还可以帮助农民在收割的时候实现日常任务的自动化。“我们能够为拖拉机做相应的变成,并使它根据土壤调整种子的播种,”Vollmar介绍道:“这有助于农民对农田正在发生的事情做出及时的反应。”
对于Vollmar而言,一切都始于数据。大多数情况下,农民必须少依赖直觉而更多依赖数据来做出明智的决定。“我们不断地挑战现状,并思考如何通过技术实现更高的农场生产率和效率,” Vollmar说,“我们希望能够解决我们的星球所面临的巨大挑战。”在这个系列中,iQ探索全新的利用信息的方式来充实我们自身、环境和身边的人们。我们关注从智能手表和智慧城市收集的数据,是如何通过大数据而带来更好的生活。想要了解更多关于大数据和高性能计算技术,如内存分析和Intel Xeon处理器请访问
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08