
2016年,商业智能和数据分析领域的新趋势
1946年2月14日,地球上第一台电子计算机诞生。在这70年的岁月里,信息科技深刻地改变了人类社会。尤其是在新世纪里,互联网和大数据引领变革的潮流,人类历史掀开了最为绚烂的一页。在2016年,我们依然将看到商业世界会发生巨大的变化。新的数据分析工具将出现,给公司提供更多的业务情报、业务指导和市场操作策略。具体说来,我们在这一年将会看到什么呢?
数据分析人员将有更大的作用和影响力
一个很有趣的预测变化:数据科学家成为很多行业的“新星”。例如,哈佛商业评论认为数据专家是“21世纪最性感的工作”,因为他们具有越来越大的影响力。这些变化主要是因为需求驱动。调查发现公司对Python程序员的需求2014年竟增加了96%,而计算机系统分析员和信息调研人员的需求也毫无意外地增加。
Brian Dirking在Alteryx工作,该公司为客户提供数据可视化操作和数据处理服务。当谈到2016年的变化时,Dirking说“数据分析人员将会在决策中发挥更大的影响力,在会谈桌上获得更多的席位。”
Dirking介绍了一个调查结果事例,该调查结果改进了数据分析过程,并节省了数据分析时间。他指出:我们将会更加认同数据分析人员。还说道:“随着数据分析工具的改善,数据分析人员将会给企业做出更大的贡献。”
位置分析的重要性
2016年的另一个驱动力将会是地理位置分析和地理空间工具,它们能让企业更好地把握市场动态。比如,Dirking谈到的“商场布局”策略能够使企业利润飙升。
他说:“这是一些行业的紧要处。”他的公司使用交通时段分析来处理数据得出市场模型的案例,给很多大企业留下了深刻的印象。他还谈到特定实体店内细微的顾客行为。
他说:“人们是怎样逛商店的以及他们都看什么东西,变得非常重要。”并且谈到移动数据分析也可以应用在其他领域,如:运动和医学。
业务人员和IT人员的合作
人们在商业现代化发展的进程中,已经看到不同角色和部门之间的界限模糊了很多。比如:许多企业都要求IT人员跟业务人员或非技术人员的一体化合作,这样有利于工作过程的无缝衔接,而更多的人将享用数据分析的好处。
Dirking说:“人们一旦知道了一个问题的答案,他们就会发现另一个问题。” 他说,传统的工作方式是将IT人员和业务人员分成两个独立的阵营,这曾经是不错的。现在,通过建立两者之间的联系,公司可以提高工作效率和整体能力。由正确的人使用正确的数据,企业才能做出更好的决策。
预测性分析和数据发现的影响
通过收集不同类型的数据,公司可以建立更复杂的可视化模型,这将有助于他们采取准确的行动。例如:Dirking提到的“菜篮子分析”,把更好的数据模型展示给公司,让他们知道顾客在买什么,甚至他们将来最有可能买什么。
Dirking说:“它展示了很多新的东西,这些东西如果你只是拥有数据的话,是得不到的。”从CRM到销售,预测性分析和下一代商业智能将注定要改造购物车的内容。
Spark成为主流
另一个趋势与Alteryx看到的一样,即Spark将代替传统的Apache MapReduce Hadoop。
从前,存储装置通过电脑的物理集群读取和处理数据。那时,使用MapReduce管理这些分散的物理机很有意义。
随着网络可视化和其它技术的进步,推出了新的、内存大的、容易升级的系统。Dirking说:“Spark通过灵活处理数据的方法完善这些新的系统。”总的来说,我们预期看到一个新的趋势------新的数据分析工具更适合虚拟运行环境,如虚拟机或容器环境。
云将与你同在
Dirking提到,当你观察技术市场的时候,另一个预测就很明显了。就是近几年崛起的云计算,它的发展还没有停止。相反,我们看到云将供应商系统分成了不同的领域。关于是使用私有云还是公有云,或是混合方案的讨论已经开始。不管公司选择哪一种方案,它们都有一个共同点:采取常规的做法,为了充分利用云供应商提供的按需使用、可升级的系统,把成本高的硬件维护和相关工作外包出去。云应用的预测报告发现:大多数受访者称他们的公司已经扑向云计算的浪潮中。
IT巨头正在使用云服务代管各种强大的数据分析工具。像Salseforce公司以客户关系管理为中心,其它更多的公司的则搞综合分析服务。Dirking说:“Alteryx已经看到,很多客户使用诸如亚马逊的Redshift和微软的Azure以及可升级的、灵活处理数据的云服务。”
Dirking说:“这些进展,不仅让人们能快速升级系统,而且还能访问移动端数据。”
Alteryx与它的合作伙伴Tableau、Cloudera将举办一个网络研讨会简评这些预测,并向到会的人讲解数据-------一种新的有价值的资产,为何将会越来越有用。
具体应用案例
上面所谈的数据预测分析技术进展,正在用不同的方法影响不同的市场。
例如:一个最近的博文讨论到,运动团队如足球、橄榄球队是怎样利用数据分析确定队员的位置或是他们应该在哪比赛。因为新的数据驱动策略的应用,能够为他们带来新的球迷,并且让队员在运动中获得不同的体验。
数据分析在医疗保健方面的应用。假设一家大公司不得不使用一个半衰期很短同位素治疗癌症。每天,公司都要考虑生产多少个同位素,什么时间以及在哪儿使用。在交通时间分析法之前,有很多低效的路径选择方法。但是当你确切地知道运货需要多长时间时,你就能采取更恰当的行动,给公司和他们的客户节约资金、节省时间,让他们把更多的精力投入到未来的发展中。我们可以打赌说,这个时间预测分析也是可以挽救更多的生命的。
在新的一年里,让我们一起看着上述的预测变成现实吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-05大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-05CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-05CDA认证在国际市场上的认可度正在逐渐增长。CDA(Certified Data Analyst)认证,源自中国,面向全球,旨在提升数字化人才的数据 ...
2025-08-04本次活动市场价2000元,现面向会员免费开放,会员朋友更可以邀请一位非会员免费参加。 【活动目标】 ...
2025-08-04MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-04反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-04CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-04评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29