
大数据分析在安全防御中的前世今生
在《碟中谍5:神秘国度》中,神勇的阿汤哥再一次完成不可能任务,冒死进行无氧潜水更换了储存信息的芯片。这是因为其所要进入的领域启用了“步态分析识别密码”,即通过机器扫描进入者的走路姿势、行动喜好,一旦检测异常立即释放高能电压。而实际上,随着大数据安全分析技术和产品的发展,这样的高级密码形式或许在不久的将来便会从银幕走进现实。
试想,在未来,即使有人掌握了你的开机密码,也根本无法成功打开你的电脑。如何才能做到这一点?“在原来的安全认证体系中,我们一般都是通过基于身份认证的控制、以及口令、令牌等来解决安全问题。而现在,我们可以把人的因素和情景的因素全部进行结合,例如根据使用者键盘的使用习惯,对这些数据进行细腻度的精准分析,即便有人掌握了口令而使用习惯不对,也照样无法打开。”在近日北京的一场采访中,启明星辰集团副总裁、泰和本部负责人张颖如是说道。而张颖同时也强调:如果不是使用大数据分析,仅靠传统的常规安全手段是做不到这一点的。可以说,大数据安全分析正在为企业的安全防御带来质的改变。
在即将过去的2015年,无论是大数据安全分析,还是数据驱动安全的口号都变得异常火热,其似乎已成为安全界公认的未来安全的发展重要方向之一。那么,大数据安全分析究竟为安全带来了什么?它究竟因何“火”了起来?
对此,启明星辰泰和本部产品总监叶蓬谈道:“其实,大数据本身在学术界的一些相关理论、研究出现的比较早,但是真正得到大规模应用,还是随着近年来互联网应用的逐渐兴起应运而生的。对于安全领域来说,引入大数据分析的手段所带来的利好首先表现在效率得到了大大的提升,其次,一些大数据分析算法的引入、以及针对安全领域的新算法的出现,都将为未来的安全带来一种质的提升。”
同时,叶蓬认为,当前从总体上而言大数据安全分析技术作为热点已经炒作到了最高峰,但单纯从大数据安全分析在安全层面的应用来看,尚处于发展初期,但对这一技术本身来说,已经越来越趋于成熟了。目前,已经有先进或者领先的安全企业推出了新相关产品。
据悉,启明星辰集团已经将大数据分析技术充分融合到现有安全管理平台技术架构中,发布了其新一代安全管理平台系列产品。而在此之前,启明星辰已跟踪大数据安全分析技术有五年多之久。之所以在现在才推出相关的产品,张颖说道:“我们更注重的是当一个新的技术发展程度要达到工程化和产品化的时候,对我们而言才会迎来一个转折点。大数据安全分析在去年的呼声特别高,发展至今年,一些开源的技术和相关的技术群已经形成了。而启明星辰在这个时候推出我们的大数据安全分析平台,可以骄傲的说我们发布的就是成熟的产品,客户已经可以直接享受到大数据安全分析的成果。”
而对于企业的安全防御而言,大数据安全分析的应用还有其独特之处。“对于大数据安全分析产品的定位一定要准确,企业级客户使用的是一个相对封闭的内网,其所产生的数据与互联网有着本质的区别。”叶蓬说道:“互联网数据我们称之为‘窄数据’,这些数据比较单调,都是一些防病毒或者Web应用等,虽然它的量会超级大,但是分析的种类并不是很多。而在企业网里面,用户的应用、协议、数据种类很丰富,数据的宽度很大、深度也比较深,数据分析的维度特别高。企业级的大数据分析在提升数据质量、分析展现的时候都会有所不同。”
在过去,因为缺乏相关技术,企业级应用里所产生的数据很难被全部统一存储起来,只能筛选出最具价值的数据进行分析。而如今,对大数据安全分析技术的利用使得我们可以对全量的数据进行分析。
在此背景下,与互联网企业利用大数据分析技术有所不同,作为专注企业级安全防御的安全厂商,启明星辰的战略导向十分明确。对此叶蓬向记者说道:“首先,我们不会将企业网的数据拿去赢利,而是用来作为解决用户的安全问题。因此我们也在也很积极的参与威胁情报、联盟,以及威胁情报的分析等工作,我们在企业安全领域深耕了十几年,从企业安全数据的丰富度上讲我们的理解要深入得多,我们的优势就是在于我们更聚焦,我们更懂企业安全数据、更理解企业的安全数据。”
我们看到,在即将过去的2015年,国家《促进大数据发展行动纲要》正式发布,大数据的发展已经成为国家层面的顶层设计。在安全领域,随着大数据分析技术的不断引入和应用,未来的安全防御态势将随着数据的不断丰富带来潜移默化的改变。“大数据安全分析对安全的改变达到从量变到质变的时刻一定会到来,届时,整个信息化的业务方式、互联网的组网方式、以及整个安全防御方式,都将全部会改变。”张颖说道。
而着眼于实际,在即将到来的新的一年中,让大数据安全分析更加见到实效、让大数据应用场景更加丰富、从而为用户带来更大的数据价值,将成为企业级安全界对自己的期许和努力方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30