
数据分析师的档次级别区分
1、数据跟踪员
虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,
这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。
这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。
2、数据查询员/处理员
这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。
统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。
他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。
3、数据分析师
数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。
好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一不的改进,找到机会点的人。
往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。
4、数据应用师
数据应用,这个词很少被提到。但是应用数据被提的很多,分析了大量的数据,除了能找到问题以外,还有很多数据可以还原到产品中,为产品所用。
典型的是在电子商务的网站中,用户的购买数据,查看数据和操作的记录,往往是为其推荐新商品的好起点,而数据应用师就是要通过自己的分析,给相应的产品人员一个应该推荐什么产品,购买的可能性会最大的一个结论。
国内能做到这个级别的数据人员还真是少的可怜,甚至大部分人员连数据的视图都搞不定,而真正意义上的能数据应用师,可以用数据让一个产品变得更加的简单高校。
5、数据规划师
数据规划师,不能说水品上比数据应用师高多少,而是另外一个让数据有价值的方向。
往往在实际的应用中,数据都是有其生命周期的,用来分析,应用的数据也是,这点上,尤其是在互联网公司更加明显,一个版本的更新,可能导致之前的所有数据都一定程度的失效。
数据规划师在一个产品设计之前,就已经分析到了,这个产品应该记录什么样的数据,这些数据能跟踪什么问题,哪些记录到的数据,可以应该用到数据中去,可以对产品产生什么样的价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29