
大数据时代的营销怎么做?
大数据时代的营销怎么做?各公司在大数据方面出手阔绰。首席营销官调查网站(The CMO Survey)报道称,目前大约有5.5%的营销预算用于营销分析,这个数字将在未来3年内增加到8.7%。大家的期望值很高,许多公司正试图弄清楚如何破译数据,从中获得卓越的战略见解。
我非常支持这种获取和利用数据来推动决策的趋势。然而,这也是问题所在。随着数据量的增长,企业的数据利用率越来越低。我首先在2012年2月提出了如下问题:“在你的公司作出决策前,对现有或者索取的营销分析数据加以利用的项目占多大比例?”得到的结果是37%,当时我觉得这个比例太低。但当我在2013年8月提出同样的问题时,比例降至29%。图1显示了这个比例在过去18个月里持续下降。
但这个调查结果并非完全出人意料。回顾30年来相关调查的历史,数据利用率始终偏低,很多种类的营销信息都是如此,包括营销调研、广告调研和现在的社交媒体调研。这种偏低的营销分析数据利用率妨碍了大数据对利润的贡献。
妨碍有多大?有些人可能会说,营销分析等各种市场情报的最终衡量标准是能否增进企业对客户的了解。首席营销官调查网站请顶级营销人员对他们公司在“获得和利用对客户的深入见解”方面的表现打分。满分为5分,1分是糟糕,2分是尚可,3分是普通,4分是良好,5分是优秀。回顾过往得分,结果显示仍然处于普通水平(2013年8月为3.4分,2012年2月为3.5分,2009年8月为3.5分)。因此,即使用于营销分析的花费增多,但我们并未看到对客户的深入见解有所提高。
企业应该怎么做?首先,管理人员必须以终为始。上市计划、创造需求的活动和销售活动必须包括关于哪些数据应该收集以及如何利用它们的具体说明。当计划和策略中植入了大数据方案的时候,偏低的利用率可能会上升。
其次,企业必须花钱培训管理人员,让他们知道如何利用营销分析来获得洞察力、推动决策、实施策略和评估他们已经采取的行动。正是出于这个原因,我们在福库商学院(Fuqua)教授“市场情报”课程,专注于信息的“使用”而非“创造”。企业必须更加重视市场分析的应用部分。机构和咨询公司可以提供这类培训。
第三,企业必须找到和留住那些能够充分利用市场分析的合适人才。当问及“你的公司在多大程度上拥有能够充分利用市场分析的合适人才?”时(1分为没有合适的人才,7分为有合适的人才),仅仅3.4%的受访者给自己的公司打了7分,56%的人打了低于平均水平的分数。图2显示了完整的分数分布情况(平均分为3.4分,标准偏差为1.7分)。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23