
交互设计师如何培养数据分析的能力呢
面对一大堆看似杂乱的数据,如何进行信息提取与数据加工,从中获取自己想要的信息,并应用这些信息,有理有据的进行需求的讨论、最终设计决策的推进,这是每一个交互设计师必修的课程。
在我看来,数据分析是很难的。利用你当下有限的数据资源(大多数数据往往掌握在产品经理、运营手上)去整理、分析并得出结果。
交互设计师如何培养数据分析的能力呢?
首先,要有数据收集分析的意识,掌握数据产生的来源;
其次,拿到数据后,在数据间找关联性,深挖内在含义;
再次,掌握基本的数据分析方法,并在实战中加以应用;
最后,将分析的结果应用到后续工作中,检验分析结果。
如此,循环往复,形成一种职业习惯,一个工作的流程。
从平时的工作中,总结出以下几点数据分析时要注意的原则,在这里抛砖引玉,欢迎来拍:
1、明确数据分析的目的
要分析一份数据,首先得先明确自己的目的:为什么要收集并分析这样一份数据?只有你的目的明确了之后,才能对接下来你要收集哪些数据、如何收集有一个整体的把握。当然你的目的可以是多个小点,(如:用户在首页浏览了哪些内容?登录框在页面上的重要程度?)只要这些点是一个个切实待解决的问题点,将其罗列下来,一个一个的去收集数据。
你分析的结果可能会改变整个项目,但有了数据的支撑,会让项目或需求有一个全新的开始或细节的调整。
2、了解数据来源并收集
按照分析的目标中罗列的点,建立一个分析框架,并按照轻重缓急进行数据收集。与此同时,需要对数据是如何产生的,如何获取这些数据进行相应的了解。在工作中应用到的数据统计工具有:金牌令箭、显微镜、CNZZ统计等,通过这些统计工具可以方便的进行数据的收集,同时交互设计师也要与前端保持沟通,了解数据统计的方法,适时添加统计的维度,请前端同学帮忙埋统计代码。
3、掌握数据分析的方法
作为交互设计师,要掌握几种基本的数据分析方法:对比分析法、分组分析法、结构分析法、平均分析法、交叉分析法……基于这些分析方法,我们可以对现状、原因、未来有初步的了解,并进入后续更深入的分析。如:现状分析适用于对现今站点或页面的浏览点击情况做一个数据统计与热点分析,可以得出用户的浏览路径及关注重点。原因分析则侧重于一个问题,深入挖掘答案。未来分析可用于与产品经理沟通时,对后期产品的规划进行数据交流。
4、沟通分析结果
在沟通分析结果前,要注意不要只用手上仅有的资讯作判断,如果手上的证据不足以完全反应实际状况的时候,以数据分析结果作为决策就很容易出错,尤其是单看某一个数据维度时。交互设计师要超前思考,考虑产品经理可能从中提出的问题,并给出回应。让沟通高效且有意义。
5、骗人的分析结果
数据是会骗人的。其中最有名的例子就是辛普森悖论。一所美国高校的两个学院,分别是法学院和商学院,开学时,人们以为有性别歧视。
法学院:(女生录取率高)
商学院:(女生录取率高)
单从学院数据来看,女生的录取率都比男生高,但是在总评中,女生的录取率比男生低。
为了避免这种情况,我们应该适当分组,并且调整某些组别的权重,根据业务来衡量可能会影响关联关系的一些潜在因素。
6、数据不是万能的
前期数据可以用来挖掘用户需求,中期数据可以用来过滤产品功能,后期数据可以用来反映产品成败。整个过程当中,数据还能举证,作为产品经理与交互设计师之间的沟通内容。
但是,我们要认清一个事实:数据不是万能的。它不能反映一切问题:在前期的分析中不一定能找到创新的突破口或者潜在的需求点;在后期的效果验证中,往往又会显得很有说服力。我们要怀着客观的心态来关注数据,从不同的角度出发,与产品经理之间保持有效的沟通。
除了以上几点原则,在数据分析过程中,我们也要避免以下几种的情况:
1、项目紧急,时间不够
在数据分析前期,先对要完成的事情做个计划表,内容包括以下几个方面:收集数据、整理数据、分析数据、总结报告。预估每个内容需要花费的时间,并将重点环节标注出来,合理安排时间。
2、注重收集,分析不够
数据分析的重点应该落在分析上,而不是数据的大量收集。在保证足够的数据信息后应立即投入整理和分析阶段。如若花了大量的时间去收集,在deadline前基本没有时间进行分析,那最后提交的只会是一份粗浅的总结,而经过深入分析的数据报告才是真正有价值的。
3、关注数据的时效性
数据可以告诉我们过去确实发生过的事情(如:用户的喜好、广告的效果等),但是随着时间的推移,数据也会相应的发生变化。数据是有时效性的,太久以前的数据可能已经无法反映当下的情况,也就不能用来做设计决策。数据越实时,就越能利用这种数据来对当下的问题做最及时的调整。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04