京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析提升电子商务转化率
消费者网上购物的平均时间,拿去年的6月跟今年的6月比较,从20分钟减少到了17分钟。另一方面,客户停留在网站上的时间减少的同时,多数电商的转化率只有0.5%左右。
在注意力越来越分散的今天,99.5%的客户是流失掉的,电商要如何去了解这群客户的购物行为特征,并且使之转化为订单量。
困境:客户停留时间在减少
时间是一个很稀缺的资源
对于电商来讲,人均浏览网页的时间,就是正在变得稀缺的竞争资源。
从图二可以发现,每天覆盖的人数,购物网站(包括淘宝)的流量增长是68%,但是人均当天在线浏览的时间(在电商这边)减少了16%。网上购物的时间,拿上一年的6月跟今年的6月比较,则从20分钟减少到了17分钟。
我们细致地看一下各家网站(见图三)会发现同样的情况:京东、卓越、当当、凡客、梦芭莎,这几家代表性的B2C中,我们发现大部分流量是增长的,但是如果我们看一下这些网站人均的当日浏览时间,京东上一年是10分钟左右,今年则只有8分钟左右。那么,这是由于现在的网站找东西更有效,所以浏览网站的时间更少一点,还是其他原因?
其实,我们可以用其他的数据挖掘一下,到底是网站的有效性小了,还是总的时间少了?我觉得其中一个很重要的东西是每个网站在争取一个顾客进来以后,它在8分钟里做了哪些事情。
电商的眼球经济只有17分钟,这是总的平均数,也即平均每个网民在电子商务网站会停留17分钟。淘宝商城、京东商城,如果我们真的把它们浏览的时间拿走的话,你会发现其他的网站所拿到的流量就会很小。
而用户停留在网站上的有效购物时间减少的同时,电商的转化率却普遍不是很高。
从访问到购物车,平均来讲,100个人进来,只有4.5个人把东西放到购物车,有96个人不会把东西放到购物车,那这96个人干吗呢?
另外,我们可以看到,京东商城下单到在线支付的百分比是29.4%,凡客诚品是29%,一号店是8.3%。
追寻流失客户购物行为特征
先让我们看一下图五的数据。
图五这个数据蓝色部分显示的35%,是指只有35%的人是今天来、今天买的;65%的人是以前来、今天才买的。这里的65%说的是新客户,不是老客户,新客户今天来到这个网站,今天就买了。从下往上第二格红色,是昨天来、今天买的客户;绿色的是2-6天前来的、今天才买的客户;最高的那个橙色是21天之前来的、今天买的顾客。当然,这个数据,每个行业都有差别,不完全一样。
从数据我们可以发现,客户从访问页面到最终付款,所用的时间是不一样的。有的用户是第一天下单,隔了一个星期才付款。尤其是一些非标准、无品牌的产品,消费者比价情况普遍,导致从访问到下单购买时间更长。(我为此访谈过部分国内电商,数据基本一致但百分比不一样。)
所以,电商业者会发现,当天来到网站的人不能完全用漏斗(图六)来看,因为他来之前压根就没想买你的东西,他只是过来看一下这个产品便宜还是贵。面对这样的顾客,你就更需要知道他们到了网站之后做了什么事情。
首先,网站可以问,客户在下单之前浏览过哪些页面和产品,他的浏览历史非常重要。
其次,要了解清楚,正在网站上浏览的客户,哪些是明确要来买东西的,哪些只是随便来逛逛的,以及他们从什么入口进入;
第三,没有购买的用户,到底看了多少产品页,多少放进购物车没有付款,多少是一个产品页都没有看的;
第四,多少客户把产品放进购物车隔天才付款的。
此外,非常重要的是,客户登录网站首页之后,除了有40%的弹出率之外,剩下60%的用户分别是从搜索、分类购物和引导购物等渠道进入,作为电商来讲,应该了解他们从哪个渠道进入到产品页面、三个渠道进入之后付款的比例分别是多少,从中找出问题所在。
这一思路与网站整体的架构相关,目前国内关注还比较少,但是先可以尝试用这个思路去看存在的问题。
最后,最想告诉读者的是,用这些简单的方法,就能知道没有付款的消费者的购物行为,只有了解他们的购物行为特征,才可以让这溜走的99.5%的用户产生付款,从而提升网站转化率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01