
速卖通选品和数据分析反馈攻略
店铺一看就没几个拿的出手的产品;上了一堆产品,结果就是没有产品;卖得动的产品,同行越来越多,越来越难卖;店铺营业额就靠几款产品撑着,“后继乏力”......亲爱的速卖通卖家朋友们,每天打开自己的店铺你是不是也有如此的感叹呢?今天小编为了帮助您解决烦恼!
从以下两个方面讲解了本课程:
一、选品步骤
第一步:明确你的大类所谓的大类就是自己的产品类型,比如说:箱包、安全防护、鞋子、电话和通讯、工具等。
第二步:使用数据纵横中的选品专家 以箱包行业为例,可以挑选30天全球箱包交易情况,下载相关数据,并稍作整理,同时可以采用不同的标准,筛选自己需要的类别。(如下图)
第三步:以上图中的“handbags”为例,搜索“行业情报”(如下图)
第四步:下载搜索词(以上图中的美国为例),并稍作整理(如下图)
通过数据的整理,可以简单计算出自己需要的数据。如:成交转化率,竞争指数等。通过计算数据,可以得到一些,成交性好,竞争数也并不高的产品。
第五步:按照不同标准,分析表格。挖掘出需要的数据。
比如:“women moshino bags 2015”这个词,它的点击率为100%,成交指数为1.3904。这样我们可以推算出,新款的“莫斯奇诺(Moshino)”包包前景应该还是不错的。
第六步:上传注意事项 上传时,要选择背景透明的清晰的图片;词库的建立要分为三种类型,首先是大词,也就是搜索和点击比较高的词,其次是高端点击率的词,还有精准的词;注意Sku编辑;上传一定要按照相关标准进行。
对这个章节进行了总结:
利用数据分析指导产品
可以选择不同的思路:蓝海、高流量、高单量等等
不能盲从数据,需要结合实际,多次实践练习
同时注意侵权风险,因为这种成交性比较高的词往往会出现侵权的可能
二、数据反馈
数据反馈对卖家朋友们的帮助也很大,因为数据反馈不但在卖家们制定推新品计划时有参考价值,而且利用数据分析还可以筛选产品,更重的是利用数据来体现这些产品的“生长情况”。
1、展开数据分析
像上图中,数据展开后很庞大,我们在分析时只需关注三个数据为例:曝光量、访客、支付订单数。
有时,我们还需要分析产品在哪些国家受欢迎,主要的国家销售情况,如下图:
整改措施:
对比行业情况,该产品1/3的流量来自与巴西,说明该款式适合巴西,巴西的点击率低,可以考虑分析把图片做处理。而俄罗斯市场数据有待提高,具体做法是:排除产品之外的因素,可以看小语种是否发上去,考虑增加俄语描述;关键词的设置;产品针对俄罗斯做一些活动;邮件发送邀请俄罗斯客人等等。最后每周下载数据,核实改进效果。
2、流量来源
通过具体数据分析,对比店铺流量的各渠道比例;同时对比分析平台的搜索关键词;还有每周数据和每月数据的对比,看上升还是下降,分析产品的“健康状况”;最后还要分析产品的引流情况。
课程总结:选品和分析数据反馈示意图
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16