京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析 人工智能或将取代人类直觉
据国外媒体报道,研究人员认为,电脑不久便会在很多领域取代人类直觉。麻省理工学院研发了一项新系统,而该系统在几次竞赛中表现得比最聪明的人还要出色。麻省理工学院的研究人员设计了一款大数据分析系统。该系统的目的是,在寻找数据背后隐藏的规律时,可以起到替代人类直觉的作用。
该系统名为“数据科学机”(Data Science Machine),和人类选手一起参加了三次数据科学竞赛,并且在三次竞赛中都获得了出色的成绩。在这三次竞赛中,数据科学机的预测准确率分别为最终获胜者的94%、96%和87%,在共906支参赛队伍中,这一成绩超过了615支队伍。
“我们将数据科学机视作对人类智慧的天然补充,”麦克斯·坎特(Max Kanter)说道。正是他的硕士论文为该机器提供了理论基础。
“有太多太多的数据需要进行分析,但目前并没有得到我们的充分利用。因此,我们或许应当找出某种解决方案,就算实际解决不了什么问题,至少也能让我们行动起来。
数据科学机能够以“非人”的速度完成其预测计算,每次提交答案所需时间仅为2小时到12小时之间,而人类参赛队伍则需要工作数月时间,才能完成相应的计算。卡尔安·维拉马沙纳尼(Kalyan Veeramachaneni)是坎特的论文导师及麻省理工学院计算机科学与人工智能实验室的一名研究科学家,他和坎特共同参与了这项研究。
在选择具有某种特征的数据进行分析时,往往要用到人类的直觉。而这两名研究人员的研究结果便是,让机器来做这个决定,即扮演起人类直觉的角色。“在为工业解决了大量数据科学问题之后,我们从自身经验中观察发现,这其中有着至关重要的一步,叫做特征工程。”
数据科学机运用多种指标,寻找数据库中、数据结构关系间的相关性,该机器可以利用这些指标在数据库中进行部署工作,并找到这些数字的平均数。在这一过程中,该机器还会寻找分类数据,即处在某一范围之内的数据,例如一周之中的某几天等。
通过与麻省理工学院计算机科学与人工智能实验室(CSAIL)的其他研究人员的合作,维拉马沙纳尼成功地将机器学习技术运用于解决实际问题之中,例如,预测有哪些学生会翘掉在线课程。
他表示,制造数据特征是该过程中极其重要的一步。“首先你得确定需要从数据库中提取出哪些变量,而为此你可能会有许多不同的想法。”
“数据科学机本身就是一项令人难以置信的伟大项目,因为它成功地将尖端研究成功运用到解决实际问题中去,提供了一种全新的看待该问题的方式。”哈佛大学的一名计算机科学教授马戈·塞尔策(Margo Seltzer)说道。“我认为,他们所做的一切很快就会变成行业标准。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29