京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析 人工智能或将取代人类直觉
据国外媒体报道,研究人员认为,电脑不久便会在很多领域取代人类直觉。麻省理工学院研发了一项新系统,而该系统在几次竞赛中表现得比最聪明的人还要出色。麻省理工学院的研究人员设计了一款大数据分析系统。该系统的目的是,在寻找数据背后隐藏的规律时,可以起到替代人类直觉的作用。
该系统名为“数据科学机”(Data Science Machine),和人类选手一起参加了三次数据科学竞赛,并且在三次竞赛中都获得了出色的成绩。在这三次竞赛中,数据科学机的预测准确率分别为最终获胜者的94%、96%和87%,在共906支参赛队伍中,这一成绩超过了615支队伍。
“我们将数据科学机视作对人类智慧的天然补充,”麦克斯·坎特(Max Kanter)说道。正是他的硕士论文为该机器提供了理论基础。
“有太多太多的数据需要进行分析,但目前并没有得到我们的充分利用。因此,我们或许应当找出某种解决方案,就算实际解决不了什么问题,至少也能让我们行动起来。
数据科学机能够以“非人”的速度完成其预测计算,每次提交答案所需时间仅为2小时到12小时之间,而人类参赛队伍则需要工作数月时间,才能完成相应的计算。卡尔安·维拉马沙纳尼(Kalyan Veeramachaneni)是坎特的论文导师及麻省理工学院计算机科学与人工智能实验室的一名研究科学家,他和坎特共同参与了这项研究。
在选择具有某种特征的数据进行分析时,往往要用到人类的直觉。而这两名研究人员的研究结果便是,让机器来做这个决定,即扮演起人类直觉的角色。“在为工业解决了大量数据科学问题之后,我们从自身经验中观察发现,这其中有着至关重要的一步,叫做特征工程。”
数据科学机运用多种指标,寻找数据库中、数据结构关系间的相关性,该机器可以利用这些指标在数据库中进行部署工作,并找到这些数字的平均数。在这一过程中,该机器还会寻找分类数据,即处在某一范围之内的数据,例如一周之中的某几天等。
通过与麻省理工学院计算机科学与人工智能实验室(CSAIL)的其他研究人员的合作,维拉马沙纳尼成功地将机器学习技术运用于解决实际问题之中,例如,预测有哪些学生会翘掉在线课程。
他表示,制造数据特征是该过程中极其重要的一步。“首先你得确定需要从数据库中提取出哪些变量,而为此你可能会有许多不同的想法。”
“数据科学机本身就是一项令人难以置信的伟大项目,因为它成功地将尖端研究成功运用到解决实际问题中去,提供了一种全新的看待该问题的方式。”哈佛大学的一名计算机科学教授马戈·塞尔策(Margo Seltzer)说道。“我认为,他们所做的一切很快就会变成行业标准。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01