京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析 人工智能或将取代人类直觉
据国外媒体报道,研究人员认为,电脑不久便会在很多领域取代人类直觉。麻省理工学院研发了一项新系统,而该系统在几次竞赛中表现得比最聪明的人还要出色。麻省理工学院的研究人员设计了一款大数据分析系统。该系统的目的是,在寻找数据背后隐藏的规律时,可以起到替代人类直觉的作用。
该系统名为“数据科学机”(Data Science Machine),和人类选手一起参加了三次数据科学竞赛,并且在三次竞赛中都获得了出色的成绩。在这三次竞赛中,数据科学机的预测准确率分别为最终获胜者的94%、96%和87%,在共906支参赛队伍中,这一成绩超过了615支队伍。
“我们将数据科学机视作对人类智慧的天然补充,”麦克斯·坎特(Max Kanter)说道。正是他的硕士论文为该机器提供了理论基础。
“有太多太多的数据需要进行分析,但目前并没有得到我们的充分利用。因此,我们或许应当找出某种解决方案,就算实际解决不了什么问题,至少也能让我们行动起来。
数据科学机能够以“非人”的速度完成其预测计算,每次提交答案所需时间仅为2小时到12小时之间,而人类参赛队伍则需要工作数月时间,才能完成相应的计算。卡尔安·维拉马沙纳尼(Kalyan Veeramachaneni)是坎特的论文导师及麻省理工学院计算机科学与人工智能实验室的一名研究科学家,他和坎特共同参与了这项研究。
在选择具有某种特征的数据进行分析时,往往要用到人类的直觉。而这两名研究人员的研究结果便是,让机器来做这个决定,即扮演起人类直觉的角色。“在为工业解决了大量数据科学问题之后,我们从自身经验中观察发现,这其中有着至关重要的一步,叫做特征工程。”
数据科学机运用多种指标,寻找数据库中、数据结构关系间的相关性,该机器可以利用这些指标在数据库中进行部署工作,并找到这些数字的平均数。在这一过程中,该机器还会寻找分类数据,即处在某一范围之内的数据,例如一周之中的某几天等。
通过与麻省理工学院计算机科学与人工智能实验室(CSAIL)的其他研究人员的合作,维拉马沙纳尼成功地将机器学习技术运用于解决实际问题之中,例如,预测有哪些学生会翘掉在线课程。
他表示,制造数据特征是该过程中极其重要的一步。“首先你得确定需要从数据库中提取出哪些变量,而为此你可能会有许多不同的想法。”
“数据科学机本身就是一项令人难以置信的伟大项目,因为它成功地将尖端研究成功运用到解决实际问题中去,提供了一种全新的看待该问题的方式。”哈佛大学的一名计算机科学教授马戈·塞尔策(Margo Seltzer)说道。“我认为,他们所做的一切很快就会变成行业标准。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21