
2016年商业智能十大趋势
商业智能一直是发展最快的企业领域之一。不只是技术本身发展迅速,人们用于推广普及并从数据中获取价值的方法也在成倍地增加。人们愈发重视通过更加高级的分析来解答更加深入的问题,以及为管控自助商业智能而生的全新方法便是这些趋势之一。创新的潜能远未耗竭,本文将重点介绍2016年商业智能的几大趋势。
1. 管控与自助式分析成为最佳搭档
很多人都认为管控与自助式分析之间是水火不容的天敌关系。或许正因为此,他们看到管控与自助式分析把酒言欢会颇感吃惊。其实它们已化干戈为玉帛,业务与技术之间的文化隔阂也日渐烟消云散。各种各样的组织已经认识到,数据管控若方法得当,反而有助于培养一种分析文化,从而满足业务需求。如果有集中、清晰且快速的数据源,并且知道在安全和性能方面有人(IT部门)操心,人们便更有可能对数据进行深入的分析。
2. 可视化分析成为一种通用语言
无论是在董事会会议室,还是在传媒中,抑或是在社交媒体上,交流方式无不因数据而改变。人们通过将数据可视化来探讨问题、揭示洞见,以及与数据专家及非专家等人士分享故事。随着数据使用量的增长,将有更多的人通过数据来寻求专业问题和个人问题的答案。用人单位将寻觅能够缜密思考数据的求职者。届时,可视化分析将发挥通用语言的作用,襄助人们快速洞悉真知灼见、富有成效地展开协作并围绕数据建立一个社区。
3. 数据产品链变得大众化
自助式分析工具已经改变了人们对商品的期望。2016年,在数据的各个处理环节人们都将需要获得支持,尤其是随着更多千禧一代进入劳动大军,这种现象将更为明显。业务用户要想不断通过迭代方法持续改进,就必须能够即时地将特定数据形象地表现出来。正因为此,自助式数据准备工具甚至是自助式数据仓库作为自助式分析的自然延伸,其需求势必出现增长。得益于这种大众化,人们将能够快速响应不断变化的优先事务。
4. 数据集成开始风生水起
在很多公司都希望实现敏捷分析。他们希望快速向合适的人员提供合适的数据。 这是一项不小的挑战,因为这些数据位于很多不同的位置。跨多个数据源进行处理可能枯燥乏味且/或不可行。2016年,我们将看到数据集成领域涌现很多新的从业者。随着各种先进工具不断问世以及新的数据源层出不穷,公司将不再尝试从同一个位置收集每一项数据。 数据浏览器将连接到其所在位置的每个数据集,然后合并或混合数据,或者与更多敏捷工具和方法一起协同处理数据。
5. 高级分析不再只是分析师的专利
整个组织范围内的非分析人员也变得愈发老道精干。基于他们的数据所生成的图表已不能满足他们的胃口。 他们希望获得更深入、更有成效的分析体验。 因此,组织将采用可使用户应用统计数据、提出一系列问题并自始至终参与分析流程的平台。举例来说,作为中国第二大航空运输公司,东方航空的普通员工便能轻松利用Tableau控制面板进行高级数据分析,可对营销数据、竞争对手、其他航空运输公司以及各路航线的营收情况等高级数据进行分析。在使用Tableau的一年时间内,东方航空的营业收入增加了2亿美元。由此可见,非专业分析人士在处理高级数据时,有了Tableau的帮助,便可轻松应对。
6. 云端数据和云分析开始崛起
2015 年,人们开始欣然接受云。他们意识到,将数据放在云端不仅轻松方便,而且高度可扩展。他们还认识到,云分析使他们具备灵活应变、机动敏捷的能力。2016年,将有更多人改用云,这在一定程度上要得益于可帮助他们使用Web数据的各种工具。早期采用者们已经开始从这些数据中收获新知,其他人正逐渐认识到自己也应如此。越来越多的公司将利用云分析来更快地分析更多数据。他们将像依赖任何其他关键企业系统一样,完全离不开云分析。
7. 分析卓越中心(COE)带来卓越成效
为了促进自助式分析的采用,越来越多的组织将成立卓越中心。这些中心在推行以数据推动的文化方面发挥着至关重要的作用。这些中心会推出诸如在线论坛和一对一培训等支持计划,在相关计划的帮助下,即使不是专家,也能将数据纳入决策过程。久而久之,这些中心就会在整个组织范围内建立起以数据为依据制定工作流程的机制。
8. 移动分析自成一体
移动分析已然成熟,独立为一个领域。它不再只是与旧式商业智能产品交互的接口。2015年,能够提供流畅“移动优先”体验的产品开始出现。处理现实世界中的各种数据已不再是烦琐不堪的苦差事,而成了分析过程中充满活力的一个环节。近日,Tableau更是推出新的全新移动应用程序Vizable,为更多人带来了有趣易用的数据分析。这款免费的iPad应用程序支持使用捏合、轻扫和拖动等手势来探索数据,从而使用户可在数秒内实现数据的可视化,完美地实现了移动分析自助化、趣味化。从带着Apple Watch的“跑马达人”(跑马拉松爱好者)到需要分析电子表格、马不停蹄的企业管理者,Tableau的分析软件能帮助更多人看见并了解数据。
9. 人们开始深入发掘物联网数据
2016 年物联网势必更加盛行。似乎一切事物都将有一个传感器,用于将信息发回处理中心。不妨想一想移动设备昼夜不停产生的所有数据,这只是冰山之一角。随着物联网数据量的增长,从中分析出真知灼见的可能性也相应增加。企业将寻找可帮助用户探索数据、然后以安全、受控、交互性的方式分享发现结果的工具。
10. 新技术的兴起将填补缺口
在商业智能生态系统中已有很多新技术问世。随着这些技术进入市场,我们将看到有一些需要填补的缺口。为填补这些缺口,一些新的企业将应运而生。Hadoop加速器、NoSQL数据集成、物联网数据集成、改进的社交媒体-所有这些都提供了创立新企业的机遇。2016年,我们将看到一批致力于填补缺口的企业崛起,进而带动市场整合。形形色色的组织也将继续摒弃一个个孤立的解决方案,改而采用包含这些新技术的开放、灵活的解决方案堆栈。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15