京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
那么什么样的人可以胜任数据分析师这一职位呢?
自我介绍彰显表达能力
一般来说,数据分析师面试一开始都会会让候选人先自我介绍。很多分析师可能会想,又要让我介绍自己啊,可能会有点不耐烦,但其实这是面试的第一关,如果一个数据分析师连最熟悉的“自己”都不知道怎么表达,那他怎么向别人展示数据分析的结果或想法呢?在深不可测的商业场景中,做数据分析并服务业务部门毫不容易,若一个分析师无法在短短5分钟内让我知道他的背景、他有什么优势能让他得到这份工作,这第一关就过不了。
“赢”应该是一种习惯
“你过去做过什么数据分析或数据挖掘的项目,这个项目让你感觉最兴奋的是什么?”这个问题经常被问到。
因为“赢”是一种习惯,若求职者曾做过很好的东西,那么将来会追求做得更好。 但如果求职者做过最好的东西在别人看来都只是一般的话,那该应聘者就不是个很优秀的人。
在面试中,很多人之所以认为自己的项目做得好,只因他们从没用过数据,只不过抓到一些别人未做过的空白点,因而觉得自己做得很棒。
盲目给出答案不靠谱
小陈目前是一位成功的数据分析师,他介绍说,曾经有次面试新人,问到“若你是行政总裁的分析师,今天是周一的上午,你要给老板看哪三个指标,让他知道公司上个星期的运营是可靠的?”这个问题时,许多求职者连一个问题都没问就开始给答案了。这些答案五花八门,并且很容易推翻。
“一般来讲,这种人会让我很失望,因为连问题都没问好, 怎么给答案呢?为什么不问一下,上个星期发生了什么事,老板最关心的是什么呢?如果连这些讯息都不知道的话,盲目给出的答案当然不可能是对的。”
估算题考逻辑推理
中国的人口有多少?5年后中国的人口是多少?被问到类似问题的时候,一般求职者会觉得冤枉,中国人口那么多,我怎么会清楚。
的确,但作为数据分析师,应该有一定的逻辑推演能力。在完全没有经验和足够数据的情况下,数据分析师应当能考虑到人口增长的因素,如中国人口的增长情况、死亡率等等。
综上所述,数据分析的人才不仅要懂得深度的倾听和表达,而且要对数据与商业间的感觉有足够的敏感度,懂得问问题,并能够在没有足够数据的情况下运用逻辑推演来分析现实问题。
以上是大方向的泛泛而谈,那么数据分析师具体的技能要求又有哪些呢?
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
做到以上几点,就可以胜任数据分析师一职了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29