
数据分析师指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。互联网本身具有数字化和互动性的特征,这种属性特征给数据搜集、整理、研究带来了革命性的突破。与传统的数据分析师相比,互联网时代的数据分析师面临的不是数据匮乏,而是数据过剩。因此,互联网时代的数据分析师必须学会借助技术手段进行高效的数据处理。更为重要的是,互联网时代的数据分析师要不断在数据研究的方法论方面进行创新和突破。
那么什么样的人可以胜任数据分析师这一职位呢?
自我介绍彰显表达能力
一般来说,数据分析师面试一开始都会会让候选人先自我介绍。很多分析师可能会想,又要让我介绍自己啊,可能会有点不耐烦,但其实这是面试的第一关,如果一个数据分析师连最熟悉的“自己”都不知道怎么表达,那他怎么向别人展示数据分析的结果或想法呢?在深不可测的商业场景中,做数据分析并服务业务部门毫不容易,若一个分析师无法在短短5分钟内让我知道他的背景、他有什么优势能让他得到这份工作,这第一关就过不了。
“赢”应该是一种习惯
“你过去做过什么数据分析或数据挖掘的项目,这个项目让你感觉最兴奋的是什么?”这个问题经常被问到。
因为“赢”是一种习惯,若求职者曾做过很好的东西,那么将来会追求做得更好。 但如果求职者做过最好的东西在别人看来都只是一般的话,那该应聘者就不是个很优秀的人。
在面试中,很多人之所以认为自己的项目做得好,只因他们从没用过数据,只不过抓到一些别人未做过的空白点,因而觉得自己做得很棒。
盲目给出答案不靠谱
小陈目前是一位成功的数据分析师,他介绍说,曾经有次面试新人,问到“若你是行政总裁的分析师,今天是周一的上午,你要给老板看哪三个指标,让他知道公司上个星期的运营是可靠的?”这个问题时,许多求职者连一个问题都没问就开始给答案了。这些答案五花八门,并且很容易推翻。
“一般来讲,这种人会让我很失望,因为连问题都没问好, 怎么给答案呢?为什么不问一下,上个星期发生了什么事,老板最关心的是什么呢?如果连这些讯息都不知道的话,盲目给出的答案当然不可能是对的。”
估算题考逻辑推理
中国的人口有多少?5年后中国的人口是多少?被问到类似问题的时候,一般求职者会觉得冤枉,中国人口那么多,我怎么会清楚。
的确,但作为数据分析师,应该有一定的逻辑推演能力。在完全没有经验和足够数据的情况下,数据分析师应当能考虑到人口增长的因素,如中国人口的增长情况、死亡率等等。
综上所述,数据分析的人才不仅要懂得深度的倾听和表达,而且要对数据与商业间的感觉有足够的敏感度,懂得问问题,并能够在没有足够数据的情况下运用逻辑推演来分析现实问题。
以上是大方向的泛泛而谈,那么数据分析师具体的技能要求又有哪些呢?
1、懂业务。从事数据分析工作的前提就会需要懂业务,即熟悉行业知识、公司业务及流程,最好有自己独到的见解,若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的使用价值。
2、懂管理。一方面是搭建数据分析框架的要求,比如确定分析思路就需要用到营销、管理等理论知识来指导,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。另一方面的作用是针对数据分析结论提出有指导意义的分析建议。
3、懂分析。指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、分组分析法、交叉分析法、结构分析法、漏斗图分析法、综合评价分析法、因素分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、判别分析法、主成分分析法、因子分析法、对应分析法、时间序列等。
4、懂工具。指掌握数据分析相关的常用工具。数据分析方法是理论,而数据分析工具就是实现数据分析方法理论的工具,面对越来越庞大的数据,我们不能依靠计算器进行分析,必须依靠强大的数据分析工具帮我们完成数据分析工作。
5、懂设计。懂设计是指运用图表有效表达数据分析师的分析观点,使分析结果一目了然。图表的设计是门大学问,如图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。
做到以上几点,就可以胜任数据分析师一职了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18