京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在Paradigm4(也就是开源计算数据库管理系统SciDB的缔造者)本周发布的一份面向超过一百位数据科学家的调查报告当中,他们发现有71%的受访数据科学家认为随着数据源种类以及数据规模的不断增加、他们的工作难度也随之逐步攀升。
值得注意的是,只有48%的受访者在调查中表示他们曾经在工作当中使用过Hadoop或者Spark,而且76%的受访者认为Hadoop的执行速度太过缓慢、在建立规划时需要投入大量精力或者存在其它严重局限。
“数据源种类的不断增加正迫使数据科学家们寻找处理问题的捷径,否则数据量与财政预算之间的矛盾将变得不可调和,”Paradigm4公司 CEO Marilyn Matz表示。“目前对于数据规模的关注掩盖了分析工作当中的真正挑战所在。只有解决对不同类型数据加以利用这一重大难题,我们才有可能释放分析手段当中 所蕴藏的巨大潜能。”
即使抛开Hadoop平台周边存在的诸多挑战性因素,其本身也仍然无法令人满意。约有半数受访者在调查中表示(49%),他们发现自己的数据很 难与关系型数据库表相适应。59%的受访者指出他们所在的企业已经开始使用复杂的分析机制——包括协方差分析等数学手段、集群化、机器学习、主成分分析与 图形操作,而非商务智能报告等“基础分析”手段——对业务数据进行分析。
另有15%的受访者计划在未来一年中开始使用复杂分析机制,16%的受访者则将复杂分析机制的引入规划设定在未来两年内。只有4%的受访者表示他们所在的企业尚无计划使用复杂分析方案。
Paradigm4认为这意味着大数据这一“唾手可得的价值果实”已经开始转化为实际收益,而数据科学家们将需要进一步深入研究、从而最大程度提升其附加价值。
“大数据发展进程中由简单向复杂分析的过渡预示着分析机制将逐步走向规模化道路,而这个过程将超越单一服务器内存容量限制、将分散且易于忽略的 价值作为关注重点并需要以适当的混合采样频率作为依托——这一切都将成为分析领域的新兴需求,”Paradigm4在报告中写道。“这些复杂分析方法同时 也会给数据科学家带来众多不受监管且无从假设的实际处理方案,并最终让数据自身有能力给出结论。”
有时候单靠Hadoop还远远不够
Paradigm4还认为,Hadoop已经被不切实际地夸大成了一套具有普遍性与颠覆性的大数据解决方案。报告指出,在某些特定复杂分析用例 当中,Hadoop根本不能算是可行的解决方案。Paradigm4表示,基础分析已经成为一种“高度并行机制”(也被称为‘数据并行机制’),而复杂分 析则并非如此。
所谓高度并行问题可以被拆分成多个独立的子问题且能够并行运作——不同任务之间几乎甚至完全不存在关联性,因此大家不需要一次性访问全部数据内 容。这也正是Hadoop MapReduce在处理数据时所遵循的办法。而非高度并行类分析任务,例如众多复杂分析问题,要求一次性使用并共享全部数据内容并在处理过程当中随时进 行结果通信。
22%的受访数据科学家在调查中表示,Hadoop与Spark并不适合自己的分析实例。Paradigm4公司还发现,35%的受访数据科学家曾经尝试过Hadoop或者Spark,但最终放弃了将其引入实际业务环境的打算。
Paradigm4在报告中提到的111位美国数据科学家来自由创新研究企业Innovation Enterprise自2014年3月27日到4月23日进行的调查群体。Paradigm4在下面这份图表当中汇总了全部相关调查结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26