京公网安备 11010802034615号
经营许可证编号:京B2-20210330
从公众平台分析,浅谈怎么做数据分析
前言:不知道有多少产品经理的童鞋平常工作会负责数据分析的内容?又有多少负责数据分析内容的童鞋有去了解数据分析?——前者我有;后者,反正我是没有。
最近由于跟公众平台用户分析内容频繁的接触,天天对着数据晃啊晃的,某个瞬间突然想起虽然跟数据打了这么多年的交道,但自己好像连“数据分析”是什么也懵懵懂懂,顿时细思恐极,于是萌生了好好总结一下的想法。
简单说,数据分析是把大量数据按照一定方法进行分析,形成概括总结的过程,以便采取适当行动。
在产品的整个寿命周期,包括从市场调研到售后服务和最终处置的各个过程都需要适当运用数据分析过程,以提升有效性。如一个企业的领导人要通过市场调查,分析所得数据以判定市场动向,从而制定合适的生产及销售计划等。
在互联网营销方面,主要体现在广告投放和活动推送。
通常,广告投放和活动推送前的数据分析可以分为两步走。第一步:确定目标群体。比如,目标群体是18~25岁,上网购物的年轻女性。第二步:描述此群体的活动轨迹。也就是说,知道目标客户群做什么事、在什么时间地点能够找到他非常重要。
数据分析里经常可以看到两个统计术语:同比和环比。
同比分析和环比分析都有增长速度和发展速度两种方法。
ps:当上期/历史同期数据为0时,没有比较意义,不予考虑。
请大家先看两张图:
图1:用户分析昨日关键指标的数据呈现

图2:“日、周、月”统计方法的说明
由图2可知,图一的用户分析是使用了环比增长速度来表示用户的“日”变化情况。
这里有个问题一直困扰着我:用户分析环比到7天前、30天前的数据是否有必要? 是要对比昨天的天气、温度、湿度和7天前、30天前的天气、温度、湿度,以便知道7天后、30天后我该穿什么衣服吗?
个人感觉这边可以去掉周、月的无用数据,增加以“周”、“月”为基数的环比数据。
应该会有童鞋常常纠结于如何选择合适的图表表达数据诉求,在这里也简单介绍几种常用数据分析统计图表的特点、使用方法以及注意点。
折线图主要是在按照时间序列分析指标值变化趋势的情况下使用,是有连续性的。通常情况下X轴设定为时间,Y轴设定为其他指标值。如分析页面PV,UV,转化数(率),周期内交易量,用户增长量等指标整体变化趋势时多用折线图。如下图:
图3:用户增长趋势分析
上图就是表示用户每天(还可以是每小时段、周、月或年)的变化趋势,从图中可得到 “平时工作日的访问比较多,周末的访问比较少”的分析结论。
如果在相同单位下,同时有多个指标,那么就可以细分折线图,如把图3的增长来源组合在一起,可变成下图:
图4:增长来源分析
由上图可得出通过“其他”方式关注公众号的用户是最多,也是说用户比较偏好通过“其他”方式关注公众号,那么后面是不是就需要调整策略,比如侧重这方面的营销等等。
折线图的注意事项
柱形图用于显示一段时间内的数据变化或显示各项之间的比较情况。柱形图常见的有三种:横柱形图,竖柱形图及堆积柱形图。
横柱形图一般用来表示一类项目的横向对比,有一个排名的概念。横柱图的X轴通常代表确定数值大小的刻度尺。下图是按省份分布对用户数量的排名图:
图5:用户属性-省份分布
竖柱形图常用来表示时间序列的指标数值变化情况,这个跟折线图差不多,不同的是竖柱形图偏向于表现数量,折线图偏向于表现趋势。如下图(因为公众平台没有这块的内容,随便百度了一张):
图6:随便百度的图
看到这里,肯定有童鞋会有“横、竖柱形图好像都是好像没什么差别”的感觉,那么他们是否可以互相转换呢?其实是可以的,但是当X轴的名称很长的时候,你去看看效果,保证惊呆你。
堆积柱形图主要显示单个项目与整体之间的关系,它比较各个类别的每个数值所占总数值的大小。比如图3的用户增长的各个指标占比总数量的情况,可整理为下图:
图7:各指标用户增长情况
由上图就可看出每个时间段,各指标的用户增长占比。
柱图的注意事项
饼图只显示一个数据系列 (数据系列:简单说是excel表中的一行或一列的数据)中各项的大小与各项总和的比例。如下图:
图8:用户属性-top10机型分布
请大家注意 “top10”这个字眼,这是在告诉我们饼图比较适合类目数量是10个以内(或只区分部分主要类目,其他类目统计在一起)的场合。另外饼图只表示的比例,要体现对应数量可像上图在右边加上数量的描述。文章来源:CDA数据分析师官网
做成饼图时的注意事项
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22