
大数据发展有力推动电子政务建设_数据分析师考试
自政府上网工程以来,经过十多年的发展,我国的电子政务建设已经基本越过基础设施建设阶段,进入了深化应用发展的新阶段。电子政务对全面支撑政府履职,加快政府职能转变,提高政府工作的质量和效率,增强政府监管和服务能力等方面发挥了重要作用。然而,我国电子政务发展依然存在着一些问题,特别是政府信息共享和数据开放问题影响了电子政务的综合建设成效。
一方面是信息共享问题。由于管理体制、法律法规、历史惯性以及部门间利益等方面的原因,我国的电子政务建设和发展一直处于“条块分割,各自为战”的状态,不同区域、不同领域、不同部门之间电子政务业务系统之间不相融通,造成了众多“信息孤岛”,难以实现业务协同和规模效用,甚至连基本的部门间信息数据交换都难以实现。
另一方面是政府数据碎片化和数据开放问题。一方面,我国电子政务取得了较快发展,政府各部门以及公共服务机构在履职过程中形成了大量的数据资源,这些数据分散在各个部门,数据碎片化问题严重。另一方面,信息技术已经发展到大数据时代,急需政府数据开放制度建设,依法划定数据保密与政府数据开放的边界,通过数据开放促进政府信息资源增值利用和创新应用,促进社会信息体系的建立。
《关于促进大数据发展行动纲要》将会充分促使大数据与政府所掌握的海量公共信息数据的融合和开发,有力促进我国电子政务建设的深化和转型,有效的解决以上困扰我国电子政务多年发展的数据共享开放顽疾。其作用将会突出体现在以下三个方面:
其一,政务大数据的开发利用有助于实现电子政务的信息共享与业务协同,打破信息孤岛,加快简政放权,转变政府职能。在大数据思维和应用的背景下,有关部门会全力推进基于大数据和一体化的电子政务整合力度和进程,借助发展大数据技术和建设国家基础信息数据库的机遇,出台电子政务建设标准、平台标准;理顺区域、领域、部门间的关系,一举打破“信息孤岛”,促进统一信息数据接口标准规范,逐步实现业务协同和实时数据信息交换,全面提升电子政务建设水平,切实提高政府效能,加快转变政府职能。
其二,政务大数据的开发利用有助于促使更多的与经济社会发展相关的关键数据的向社会企业开放,促进大众创业、万众创新,提升人民群众的满意程度和电子政务建设的成效。更多的将不涉及政府保密和公共安全的有用数据及时准确的向社会、机构、企业开放,能够更好地调动各个社会主体的参与性,使凝固的数据“活起来”,带动与这些数据相关的金融、交通、商务、医疗、地理信息等相关大数据产业的发展与升级,进一步提升人民群众生活便捷度,提高社会治理水平,完善国家治理体系。
第三,政务大数据的开发利用有助于政府部门重新思考定义“信息安全”,提升信息安全能力,建设“网络强国”。一方面,基于大数据思维和应用,政府部门将会重新审视、定义“信息安全”与“数据安全”的内涵,全新评定“信息安全”等级,将不涉及国家安全、公共安全的有用数据开放出去,减少“数据负担”和“安全负担”,提升政府运行效率,划清安全界限。另一方面,通过大数据匹配和模型运算,能够更好的评估数据安全等级,建立数据安全保护防卫模型和系统,检测信息数据安全保护系统,进一步提升电子政务与网络信息安全的能力水平,为全面实现网络强国战略保驾护航。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30