京公网安备 11010802034615号
经营许可证编号:京B2-20210330
14.标准误
标准差(Standard Deviation) ,也称均方差(mean square error)
各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数
标准差是方差的算术平方根。
标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。在相同测量条件下进行的测量称为等精度测量,例如在同样的条件下,用同一个游标卡尺测量铜棒的直径若干次,这就是等精度测量。对于等精度测量来说,还有一种更好的表示误差的方法,就是标准误差。 标准误差定义为各测量值误差的平方和的平均值的平方根,故又称为均方误差。
15.参数检验其实检验的是参数也就是两个或几个统计量间的差异,而非参数检验其实检验的是分布是否相同而不是看参数或统计量的差异.
16.四分位数:四分位数(Quartile),即统计学中,把所有数值由小到大排列并分成四等份,处于三个分割点位置的得分就是四分位数。
17.残差是指观测值与预测值(拟合值)之间的差,即是实际观察值与回归估计值的差。
18.自变量 因变量 内生变量 外生变量
任何一个系统(或模型)都是由各种变量构成的,当我们分析这些系统(或模型)时,可以选择研究其中一些变量对另一些变量的影响,那么我们选择的这些变量就称为自变量,而被影响的量就被称为因变量。
在经济模型中,内生变量是指该模型所要决定的变量。外生变量指由模型以外的因素所决定的已知变量,它是模型据以建立的外部条件。内生变量可以在模型体系内得到说明,外生变量决定内生变量,而外生变量本身不能在模型体系中得到说明。参数通常是由模型以外的因素决定的,因此也往往被看成外生变量。例:P=a+bQ,表示价格与数量的关系,则a、b是参数,都是外生变量;P、Q是模型要决定的变量,所以是内生变量。除此之外,譬如相关商品的价格,人们的收入等其他于模型有关的变量,都是外生变量。而Q随P的变化而变化。Q是因变量,P是自变量。在一个模型中,外生变量不可能是自变量和因变量,内生变量就是自变量或者因变量中的一个。
19.单侧检验和双侧检验
单侧检验是看是否显著大于 或者是否显著小于而双侧检验则是一步看出两者之间有显著差异,这个差异有可能是显著大,也可能是显著小。
20.交互作用是指一因子对另一因子的不同水准有不同的效果.一个实验中有两个或两个以上的自变量,当一个自变量的效果在另一个自变量的每一个水平上不一样时,我们就说存在着自变量的交互作用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31