
挖掘大数据价值 推动城市智慧管理(1)_数据分析师考试
大数据,源自于互联网、物联网、云技术的发展,技术的进步产生了纷繁复杂的巨量信息。
如何让大数据为我所用是智慧城市的一个重要命题。中国工程院院士邬贺铨指出,智慧城市是使用智能计算技术,使城市的关键基础设施的组成和服务更智能、互联和有效。
大数据是城市的智慧源泉
大数据将遍布智慧城市的方方面面,是智慧城市的智慧之源。从政府决策与服务,到人们衣食住行的生活方式,再到城市的产业布局和规划,直到城市的运营和管理方式,都将“智慧化”或“智能化”。
大数据为智慧城市建设提供强大的决策支持。在城市规划方面,通过对城市地理、气象等自然信息和经济、社会、文化、人口等人文社会信息的挖掘,可以为城市规划提供强大的决策支持,强化城市管理服务的科学性和前瞻性。大数据在城市管理上的优势将主要体现在交通管理、医疗、社会安全等方面。
应用大数据将极大提高智慧城市政府部门的决策效率和服务水平。智慧城市的建设首先需要一个“智慧政府”,大数据使数据共享成为可能,政府各个部门的既有数据库可以实现高效互联互通,极大提高政府各部门之间的协同办公能力,提高为民办事的效率,进而大幅降低政府的管理成本。
大数据将显著提升智慧城市人们的生活品质。大数据将极大地拓展民众生活空间,引领智慧城市大数据时代智慧人生的到来。大数据是未来人们享受智慧生活的基础,将改变传统“简单平面”的生活常态,通过大数据的应用服务将使信息变得更加广泛、使生活变得多维和立体。通过大数据建立家庭生活档案,智能化管理家庭日程事务、个人健康、安全起居以及外出购物。
同时,大数据将使公共服务与个人生活间的结合更为紧密,在医疗卫生、教育培训、交通、安防等领域为个人提供信息查询、内容分发、移动支付等应用体验,将人们的“简单平面”生活转向“多维泛在”,让智慧城市真正服务于民生。
政企合力实现数据与城市互融
大数据对于智慧城市的重要性不言而喻,但是目前二者并没有实现互融互通,问题出现在哪里
高德三维事业部总经理赵珂告诉笔者,大数据基本原则在于解决海量的数据的提取和整理有价值的信息。其中,最关键的是这些数据能做什么。在他看来,用数据为老百姓服务,才是政府和企业应该共同关注的目标。
从数字城市到智慧城市,政府的建设模式已经悄然发生着变化。赵珂称,政府在积极推动企业投资建设智慧城市,政府的角色已经由之前的主导转变为引导,希望由企业自主参与智慧城市项目建设。这样更加符合市场经济的规律,可以给企业更多的主动性。
对于企业来讲,从被动作业到主动寻求机会,需要的不仅仅是公司实力或者技术的储备,而是思想观念和经营模式的彻底改变。由之前的按时完成项目作业,到现在与政府合作共享,直接带来数据归属的改变,之前数据版权归政府,现在企业投资建设,数据和平台最终都属于企业,企业就会有充分的主动性来挖掘数据价值。
模式转变之后,政府和企业该如何合作完成对数据的挖掘?赵珂认为,首先应该确认的是数据一定靠各家的数据资源一起来做才能做好。随着开放度的提高,政府会同公众分享越来越多的数据,企业也会加深与政府的合作,来进行大数据的整合,最终的目标就是尽可能挖掘数据价值为公众服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14