
四、大数据驱动的侦查模式的特点
与传统侦查模式和业务信息主导的侦查模式相比,大数据驱动的侦查模式有如下特点:
一体性侦查。一体性侦查是指在侦查活动中以数据共享为机制,将分散的、不同层级的、不同区域的主体及其行为有机组织起来,形成一个整体的侦查模式。过去,由于缺乏有效内在动力和联通机制,侦查合作往往较为困难。大数据时代,大数据产生大价值,数据共享产生价值将成为合作的内在动力;而数据共享本身也就是高效的合作机制。大数据驱动的侦查模式将以数据共享为机制形成纵向合成和横向合成。纵向合成是指将不同层级的主体,形成扁平化的决策、指挥结构。数据决策和数据共享将颠覆传统侦查的金字塔式层级决策和指挥结构,形成人人参与决策、上下互联的扁平机制。横向合成包括两个方面:一个方面是指不同警种、侦查各部门(视频侦查、技侦、网侦等)以及社会的有机合成。大数据时代,大数据是侦查的基础资源,而大数据主要来源于各警种的协同收集。侦查能否成功某种程度上取决于各警种收集数据的质量,进而言之,社区警察、治安警察等以数据收集这种最为基础而又重要的方式参与到侦查活动中。各警种之间的差异只不过是数据收集、分析的不同环节而已。在这里,也许最需要提出的是,当我们侦查人员在获得侦破犯罪成功的荣耀时,要将其部分荣耀甚至主要的荣耀归功于数据采集和分析人员。进而言之,这也许将形成围绕数据采集、分析、使用等环节的职务晋升、奖金分配的基本机制。此外,社会各种力量也通过提供数据为侦查提供条件,这些数据往往是我们大数据不可或缺的一部分。警力有限,民力无穷。大数据产生的新的运用民力的方式“众包”(crowd sourcing),使得全社会几乎所有的人都可以参与到侦查中去。⑤可以确定,“众包侦查”将是大数据时代侦查动员社会力量的新模式。另一个方面是跨区域的侦查主体及其行为的合成。数据共享打破了区域间割裂,而数据共享产生价值的内在动力将推动形成高效的合作机制。总之,大数据通过纵向合成和横向合成机制形成了一体化的侦查模式。
全景式侦查。所谓的全景式侦查,就是采用海量的数据,甚至是相关的所有数据,对侦查案件进行全方位、多角度扫描、分析的侦查模式。相对于过去的侦查模式,全景式侦查有如下两个特点:一是侦查中采集和分析的数据是全景数据。全景数据也就是全面而完整的数据,在具体侦查中是够用的数据。传统侦查,由于缺乏相关信息,我们只能依赖于经验和因果关系的分析,试错式的寻找犯罪嫌疑人。而如今,我们拥有和能处理有关犯罪或某个具体犯罪的几乎所有数据,因此犯罪的任何细节、犯罪过程几乎都可能被清晰展现出来。具体来说,我们采集和分析的数据不仅是现场访问、现场勘查的数据和身份信息数据,还可以实时采集和分析视频数据、通讯数据、网络数据以及各种交易数据等等,甚至可以采集公众拥有的相关数据。这样的数据采集和分析模式突破了时空上的障碍,实现360度全方位的采集和分析数据,突破了以往的地域范围、人员范围、时间范围的限制,能将摸排范围扩大到几乎全社会所有时空,让案件侦查成为“让数据说话”的科学侦查。二是侦查思路的从面到点,侦查路径发生了根本变革。传统的侦查模式主要是根据已有条件,提出侦查假设,然后根据因果联系,一步一步验证假设。从侦查途径的类型来说,有所谓的从案到人、从人到案、从案到案、从物到案等模式[20]。总的来看,这是一种点到点的线式思路。而大数据将改变过去的点线式侦查,是从面到点式侦查,即从时间、空间、人、物、案、事件等全景式数据比对碰撞和分析,实现向数据要线索,从而锁定犯罪嫌疑人。
预测型侦查。传统的侦查模式是回溯型侦查,即案件发生后,侦查行动才介入,侦查的内容是重建过去。随着信息技术的发展,侦查行为从回溯型侦查转向了主动型侦查。主动型侦查将侦查行为介入时间大大向前推进,甚至是侦查行为与犯罪行为时间同步,即侦查行为不仅指向已经发生的犯罪,还指向正在进行的犯罪。进入大数据时代,大数据技术使我们侦查介入时间进一步发生颠覆性的变革。大数据不仅能实时感知犯罪,从而及时采取行动,更为重要的是大数据将我们的侦查行动引向未来。大数据的核心就是预测。在大数据面前,“我们不会再把人类的行为视为互不相关、随意偶然的独立事件。相反,它们应该是相互依存的奇妙大网的一部分,是相互串联的故事集中的一个片段……人类行为遵循着一套简单可重复的模型”,而且“它们的可重现性和可预测性与自然科学不相上下”[14]13。因此,借助大数据,既可以预测某一区域乃至全国的某种类型的犯罪趋势,也可以预测某一时间某一具体地点某种类型的犯罪,还可以预测某一个体的犯罪概率。⑥根据预测,我们可以制订计划,优化警力配置,采取行动。这样,对于犯罪侦查来说,过去的“犯罪发生——再反应”模式或将被改变为“预测——行动”模式。
算法侦查。传统侦查模式主要依靠侦查员的人力、经验以及运气;业务信息主导的侦查模式是通过信息查询提高了侦查效率;而大数据驱动侦查模式的核心是数据运算,算法有汇总、分类、回归、聚类等等,而云计算是大数据最基本的支撑。从宏观上说,犯罪发现、犯罪监控、犯罪预测都是大数据运算来实现;从微观上说,现场重建、现场分析、侦查决策等等都是一种数据运算。从侦查过程来看,大数据驱动的侦查过程就是算法过程:首先是数据采集和清洗,为数据运算做准备;然后是确立运算法则,建立运算模型;最后是通过运算结果获得犯罪相关信息。在算法侦查中,侦查员就是算法师,他们不仅要懂侦查学,还要掌握数学、统计学、计算机科学。他们不仅要评估数据,选取分析和预测的工具,还要确定运算法则,建立运算模型,解读运算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30