京公网安备 11010802034615号
经营许可证编号:京B2-20210330
四、大数据驱动的侦查模式的特点
与传统侦查模式和业务信息主导的侦查模式相比,大数据驱动的侦查模式有如下特点:
一体性侦查。一体性侦查是指在侦查活动中以数据共享为机制,将分散的、不同层级的、不同区域的主体及其行为有机组织起来,形成一个整体的侦查模式。过去,由于缺乏有效内在动力和联通机制,侦查合作往往较为困难。大数据时代,大数据产生大价值,数据共享产生价值将成为合作的内在动力;而数据共享本身也就是高效的合作机制。大数据驱动的侦查模式将以数据共享为机制形成纵向合成和横向合成。纵向合成是指将不同层级的主体,形成扁平化的决策、指挥结构。数据决策和数据共享将颠覆传统侦查的金字塔式层级决策和指挥结构,形成人人参与决策、上下互联的扁平机制。横向合成包括两个方面:一个方面是指不同警种、侦查各部门(视频侦查、技侦、网侦等)以及社会的有机合成。大数据时代,大数据是侦查的基础资源,而大数据主要来源于各警种的协同收集。侦查能否成功某种程度上取决于各警种收集数据的质量,进而言之,社区警察、治安警察等以数据收集这种最为基础而又重要的方式参与到侦查活动中。各警种之间的差异只不过是数据收集、分析的不同环节而已。在这里,也许最需要提出的是,当我们侦查人员在获得侦破犯罪成功的荣耀时,要将其部分荣耀甚至主要的荣耀归功于数据采集和分析人员。进而言之,这也许将形成围绕数据采集、分析、使用等环节的职务晋升、奖金分配的基本机制。此外,社会各种力量也通过提供数据为侦查提供条件,这些数据往往是我们大数据不可或缺的一部分。警力有限,民力无穷。大数据产生的新的运用民力的方式“众包”(crowd sourcing),使得全社会几乎所有的人都可以参与到侦查中去。⑤可以确定,“众包侦查”将是大数据时代侦查动员社会力量的新模式。另一个方面是跨区域的侦查主体及其行为的合成。数据共享打破了区域间割裂,而数据共享产生价值的内在动力将推动形成高效的合作机制。总之,大数据通过纵向合成和横向合成机制形成了一体化的侦查模式。
全景式侦查。所谓的全景式侦查,就是采用海量的数据,甚至是相关的所有数据,对侦查案件进行全方位、多角度扫描、分析的侦查模式。相对于过去的侦查模式,全景式侦查有如下两个特点:一是侦查中采集和分析的数据是全景数据。全景数据也就是全面而完整的数据,在具体侦查中是够用的数据。传统侦查,由于缺乏相关信息,我们只能依赖于经验和因果关系的分析,试错式的寻找犯罪嫌疑人。而如今,我们拥有和能处理有关犯罪或某个具体犯罪的几乎所有数据,因此犯罪的任何细节、犯罪过程几乎都可能被清晰展现出来。具体来说,我们采集和分析的数据不仅是现场访问、现场勘查的数据和身份信息数据,还可以实时采集和分析视频数据、通讯数据、网络数据以及各种交易数据等等,甚至可以采集公众拥有的相关数据。这样的数据采集和分析模式突破了时空上的障碍,实现360度全方位的采集和分析数据,突破了以往的地域范围、人员范围、时间范围的限制,能将摸排范围扩大到几乎全社会所有时空,让案件侦查成为“让数据说话”的科学侦查。二是侦查思路的从面到点,侦查路径发生了根本变革。传统的侦查模式主要是根据已有条件,提出侦查假设,然后根据因果联系,一步一步验证假设。从侦查途径的类型来说,有所谓的从案到人、从人到案、从案到案、从物到案等模式[20]。总的来看,这是一种点到点的线式思路。而大数据将改变过去的点线式侦查,是从面到点式侦查,即从时间、空间、人、物、案、事件等全景式数据比对碰撞和分析,实现向数据要线索,从而锁定犯罪嫌疑人。
预测型侦查。传统的侦查模式是回溯型侦查,即案件发生后,侦查行动才介入,侦查的内容是重建过去。随着信息技术的发展,侦查行为从回溯型侦查转向了主动型侦查。主动型侦查将侦查行为介入时间大大向前推进,甚至是侦查行为与犯罪行为时间同步,即侦查行为不仅指向已经发生的犯罪,还指向正在进行的犯罪。进入大数据时代,大数据技术使我们侦查介入时间进一步发生颠覆性的变革。大数据不仅能实时感知犯罪,从而及时采取行动,更为重要的是大数据将我们的侦查行动引向未来。大数据的核心就是预测。在大数据面前,“我们不会再把人类的行为视为互不相关、随意偶然的独立事件。相反,它们应该是相互依存的奇妙大网的一部分,是相互串联的故事集中的一个片段……人类行为遵循着一套简单可重复的模型”,而且“它们的可重现性和可预测性与自然科学不相上下”[14]13。因此,借助大数据,既可以预测某一区域乃至全国的某种类型的犯罪趋势,也可以预测某一时间某一具体地点某种类型的犯罪,还可以预测某一个体的犯罪概率。⑥根据预测,我们可以制订计划,优化警力配置,采取行动。这样,对于犯罪侦查来说,过去的“犯罪发生——再反应”模式或将被改变为“预测——行动”模式。
算法侦查。传统侦查模式主要依靠侦查员的人力、经验以及运气;业务信息主导的侦查模式是通过信息查询提高了侦查效率;而大数据驱动侦查模式的核心是数据运算,算法有汇总、分类、回归、聚类等等,而云计算是大数据最基本的支撑。从宏观上说,犯罪发现、犯罪监控、犯罪预测都是大数据运算来实现;从微观上说,现场重建、现场分析、侦查决策等等都是一种数据运算。从侦查过程来看,大数据驱动的侦查过程就是算法过程:首先是数据采集和清洗,为数据运算做准备;然后是确立运算法则,建立运算模型;最后是通过运算结果获得犯罪相关信息。在算法侦查中,侦查员就是算法师,他们不仅要懂侦查学,还要掌握数学、统计学、计算机科学。他们不仅要评估数据,选取分析和预测的工具,还要确定运算法则,建立运算模型,解读运算结果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26