
大数据时代传统报业如何占位(1)_数据分析师考试
大数据时代的大门刚刚开启,巨头、中小企业、各类机构都将重新寻找在互联网中的位置,报业如何立足优势恰当占位?需要务实创新的思考和回答。
数据再“大”无用武之地等于零,要搜集“慢数据” “活数据”
互联网上每时每刻都在产生数据,人们生活中无所不在的各种设备,比如电脑、手机、智能电器、感应器等等,都能时刻留下人的行为痕迹,实时产生数据,这些呈几何级增加的数据沉淀在网上,成为大数据。这些大数据有多大用?
2014年5月29日,百度董事长兼CEO李彦宏在第九届百度联盟峰会上预测了“未来5年有非常大的发展”的两大产业机会,这两大产业是“BAT(百度、阿里巴巴、腾讯)三者都不会涉足的领域”:1.新型企业级软件,解决企业从内部到外部链接的问题;2.挖掘新的有价值的“慢数据”,发掘个性化的预测信息,为用户寻找真正有价值的新数据。
李彦宏的分析有共识性、有说服力——在用户规模扩大、流量激增的情况下,目前互联网企业面临尴尬:搜集上来真正有价值的数据很少,无价值数据增多,有价值数据积累并不比传统企业更有优势。“比如最近比较火的智能硬件,手环、眼镜,搜集很多的数据,但这些数据拿过来,总觉得用不上,没法分析。”为此,他建议企业通过搜集“慢数据”来获取真正有价值的数据,找准并挖掘能真正帮助用户解决问题的新数据。这一判断,对报业这样的传统企业来说既是一种安慰,更是鼓舞。
另一个与之印证的观点是,阿里巴巴集团执行副总裁曾鸣最近有一篇长文分析说,大数据最重要的特征不在大小,而在死活。数据的死活决定一切,从数据的管理到数据的运用,数据必须能活起来,开始跑通迭代,才能产生持续价值。
既然传统媒体与新兴媒体及很多大企业一样,对如何用好大数据基本站在同一起跑线上,对报业来说,如何利用自身优势和资源去发掘、应用好“慢数据”“活数据”,让大数据成为报业未来的一大新增长点,就成为迫切需要研究解决的重要课题。
报业在大数据产业中的一席之地在哪儿?
《大数据时代》的作者维克托•迈尔•舍恩伯格被誉为“大数据商业应用第一人”,他描述了大数据价值链的三大构成:第一种是基于数据本身的公司,这些公司拥有大量数据或者可以收集到大量数据。第二种是基于技能的公司,它们通常掌握了专业技能,但并不一定拥有数据,往往是技术供应商、分析公司或者咨询公司。第三种是基于思维的公司。
在互联网上,任何主动收集庞大数据的行为,其成本都难以想象。因此,基于数据本身的第一种公司在价值链中处于最核心的位置,比如美国的谷歌、苹果、Facebook、亚马逊,中国的腾讯、阿里巴巴、百度。他们的优势是大数据聚合和模型构建,他们也想方设法把自己打造成基础设施和平台,使大数据在自己的平台上发挥出最大效用。
比如, 2014年4月百度正式发布了大数据引擎,将核心大数据能力开放,向外界提供大数据存储、分析及挖掘的技术能力,以更好地帮助传统行业挖掘数据价值,加快传统行业转型升级。百度联盟将基于“开放云”“数据工厂”“百度大脑”三级开放平台,推进“人找信息”向“信息找人”的变革,为媒体、DSP、广告主、代理商提供更简单、高效的推广及变现平台。
而具有数据思维和数据技术的公司,在未来竞争中也处于有利地位,围绕着数据化变革,将衍生出新的商业模式。一是数据资产存储,二是数据资产定价,三是数据资产中介,四是数据资产管理,五是数据驱动的解决方案。①
从价值链和报业传统优势的角度分析,报业即使在采集、处理、储存、传播等各方面完全数字化后,即使数据量再大,与那些互联网入口企业相比、与真正生成大数据的公司相比,那点数据还远远不够大,因此不可能去做基于数据本身的公司。比较理性、可行的选择是,传统报业对大数据的运用着力点应是数据资产中介、数据资产管理、数据驱动的解决方案三大类。
数据资产中介——这个应用领域对媒体来说并不陌生,比如彭博社、路透社和《朝日新闻》、日本经济新闻社等新闻机构,收集免费的数据制成数据库,通过数据的加工和组合、分析产生新的价值,再卖给有需求的企业、机构。这是一些大通讯社和财经专业媒体的强项。
数据资产管理——听起来有点儿抽象,但其中可操作的内容对报业并不陌生。比如,网络上每天产生各种新闻、信息,特别是负面新闻、评论,无论对机构、企业和个人而言都是正面或负面资产,既然是资产,如何管理就是一门生意。舆论监督本就是报业的核心功能之一,加之媒体对舆论危机公关比较擅长,由此延伸到数据资产的管理,角色跨度并不很大,不失为基于报业资源优势的一种务实选择。
再看数据驱动的解决方案——对报业来说其应用领域相当广泛。未来,媒体在做好社会记录者与信息传播者外,更应定位成社会解读者和分析预测者,做好信息和数据的深度加工、深度解读和去伪存真的服务,而大数据无疑能成为报业进行全面深刻洞察的一大利器。 下面将具体分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16