京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代 如何赢得财务人才_数据分析师考试
数字世界正在像小宇宙一样呈爆发式扩张,到2020年,数据将会从4.4万亿千兆字节增长到44万亿千兆字节。
根据IDC分析机构的最新数字显示,全球数据量每两年就增加一倍以上。那么问题来了,谁在使用这些数据呢?他们又通过这些数据获得了什么?
通过大数据获取的洞察早已超过了数据科学家的业务范畴,这些洞察深入企业业务的核心,影响到企业的利润和损失、投资和撤资决策、风险管理和增长预测等等各个方面。在这一领域,企业的“首席财务官”是当仁不让的关键人物,他们肩负着了解这些信息,并将其有效传递给企业其他部门的重要使命。
在首席财务官的领导下,财务部门将逐渐从幕后移向台前,担负起新的业务模式,例如确认、监测,管理财务风险和报酬。他们需要深入挖掘海量数据以获取价值,随后能够把这些价值传递给市场、人力、销售和企业的其他部门,以帮助这些部门制定战略并找到解决方案。
与过去相比,这些工作需要财务人才具备更广泛的技能。根据WSJ Custom Studios与甲骨文合作发布的最新报告显示,商业领袖们正在调整他们的招聘战略,以确保他们的财务人员能随时准备好应对这个新的大数据时代。
招募不同类型的人才
一家知名企业的首席财务官表示:“我们招募的人不一定是拥有会计学位的财务人员。”相反,我们更需要的是那些知道如何使用数据中深藏的价值的人才,是那些了解编程,能够查询大量交易系统的人才。
但是有些时候,作为财务专业人员还需要更多的分析思维。他们还需要具备软性技能,即能够在整个企业范围内激励、动员和引导其他部门之间的协同合作。
专业性化学品公司禾大的首席财务官表示:“软性技能是必要的。你不能指望财务功能完全像一个大型的计算机系统一样,不需经过培训就能告诉你所有东西,或者希望其他同事能立即了解那些对财务人才来说显而易见的东西。”
从今天起培养数据人才
根据麦肯锡的报告显示,到2018年将会出现19万分析技能员工的缺口,以及150万大数据领域管理人员和分析师的缺口,而这仅仅是在美国。
甲骨文全球金融业务高级副总裁Ivgen Guner在内部人才培养中获得了巨大的成功。她的部门曾经招募了一名毕业生,她一开始只是处理一些入门级的任务,随后这个年轻女孩展示了她在面对挑战和激励他人方面的天赋。Guner和其他同事的严格辅导磨练了她在数据分析和与人沟通方面的技能。现在这个年轻女孩已经成长为甲骨文副总裁,当部门需要灵活的分析和协调软技能的时候,她总能担当重要的角色。
用“云”推动财务创新
让财务专业人员能够使用最创新的技术是Ovation Brands首席财务官Keith Kravcik采用ERP云解决方案的原因之一,这一解决方案是这家总部位于明尼阿波利斯的连锁餐厅实现了财务现代化。
Kravcik希望能帮助Ovation进行重新改造,通过采用基于云的财务和绩效管理,他得以对其位于美国的300多家连锁餐馆进行全面的业绩观察。Kravcik回忆道:“我们之前使用的一个老版本的Excel,一些新员工甚至都没听说过,更别说有任何经验了。为了吸引我所需要的分析型人才来推动我们的重塑战略,我必须部署最先进的技术,让候选人能够在他们所选择的设备上使用最新的分析工具。云交付模式为我的财务团队提供了很多先进的技术体验,更易于使用、成本更低。”
现代化的财务部门需要“软硬兼备”的人才,不但需要具备基本的财务技能,还要能够与其他业务部门协调、谈判、沟通、做出正确的战略判断,还有一点更重要的,就是掌握最新的技术。当然,要找到拥有多元化技能的人才并不容易。企业需要对合适的人才进行投入和培养,并让他们获得最先进的技术和工具。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01