
工业互联网不是说说而已 GE砸十亿美元做大数据_数据分析师培训
对于一家工业企业来说,设备和技术是硬实力,但美国工业巨头通用电气公司(下称GE)却正在让自己变得越来越“软”。
7月14日,在北京798艺术区的一个展厅内,GE的工作人员向界面新闻记者展示了他们在工业互联网整体解决方案上的应用。
GE想让机器变得更有“智慧”。而要实现这一点,靠的是数据模型与数据分析。
例如在油气领域,长距离的管道运输总是存在安全隐患,油气运营商只能派人定期检修线路。但这不仅容易有工作疏漏,而且动辄上千公里的管道,要耗费的人力物力也不小。
GE的办法是,在油气管道中置入大量传感器,并让其随油气一起流动,从而能够感知管道内的流速、压强、温度等各项安全指标,并将数据实时传送到终端;接着,GE通过其自主研发的Predictivity软件,建立模型,然后对大量数据进行分析,如果数据超标,则立即发出预警。
“这样做的好处是,不仅可以提高管道设备的安全性,防范于未然,而且可以大幅降低人力等各项维护成本。” GE的一位工作人员说。
GE企业对外传播总监华春牧告诉界面新闻记者,在过去三年,哥伦比亚国家石油公司绵延1.5万英里的天然气管道,安装了GE的这套油气管道监测系统,将安全事故数量从38起下降为零,降低成本1.5亿美元,每年减少服务时间2万小时。
道达尔、BP等油气巨头也选用了GE的监测系统。不过,尚未有中国石油公司的尝试这一新模式。
根据GE的测算,中国目前铺设有8万公里油气管道,如果采用GE的管道监测方案被采用,每年将节省5亿美元的成本,并减少6.5万工作小时。
GE的数据监测分析过程是通过一个名为Predix的软件操作平台进行的。GE企业对外传播总监华春牧表示,该平台由GE与英特尔、思科、华为等多家企业联合开发,耗资十几亿美元。平台负责将各种工业资产设备和供应商相互连接并接入云端,并提供资产性能管理和运营优化服务。
华春牧称,该平台自去年开放,但仅针对AT&T、软银等部分企业,自今年起,将面向所有企业开放。届时各行各业的企业将通过该平台创建和开发自己的工业互联网应用。
作为全球工业互联网的倡导者,GE已在大数据上押下重注。华春牧告诉界面新闻记者,截至去年年底,GE已在大数据上投入了10亿美元。
在今年7月7日举行的“工业互联网中国峰会”上,GE董事长兼首席执行官杰夫•伊梅尔特称:“我们正在开启下一个新工业时代,全球工业通过硬件与软件的结合正在重新发现增长机遇。”
早在2012年,GE就已开始将目光瞄准工业互联网和大数据。彼时,GE提出,要依靠机器以及设备间的互联互通和分析软件,打造智能机器,实现人、机器和数据的无缝协作,甚至到2030年,要为全球GDP贡献15万亿美元。
这其中当然少不了中国。GE给界面新闻记者提供的一份材料显示,迄今为止,GE已在中国开展了12个工业互联网试点项目,逐步推动40多个大数据分析应用落地。
2014年3月,东方航空与GE签订了战略合作协议。GE工程师分析了东航过去三年500多架飞机、累计超过两百多万航班的全部飞行数据。分析得出的结果不仅有助于降低飞行风险,而且能够预测发动机涡轮叶片的损伤情况,从而降低维护成本和油耗。
在医疗领域,GE则推出了医院资产管理整体解决方案Asset Plus。将大型医疗设备从临床需求,到申请采购、采购完成、装机、后期使用,再到报修、报废、更替等全生命周期的情况,全部以数据形式实时汇入系统,进行资产优化管理和配置。
华春牧告诉界面新闻记者,以前病患在仁济医院进行CT检查,预约排队大概需要6-8周。2013年后,经过Asset Plus的合理管理与使用规划,平均等待时间降到一周左右。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14