京公网安备 11010802034615号
经营许可证编号:京B2-20210330
把大数据产业发展抓紧抓实抓出成果_数据分析师考试
“这是一种新的资源,将会开启一个新的时代。”贵州一家科技公司市场总监如是说,这家公司也因大数据而沸腾。
企业如斯,贵州省政府更是紧锣密鼓,加紧部署。
日前,贵州省大数据产业发展领导小组第四次会议在贵阳召开。省委副书记、省长、省大数据产业发展领导小组组长陈敏尔要求,各地各有关部门要认真贯彻落实习近平总书记视察贵州时的重要讲话精神,进一步把思想、认识和行动统一到省委、省政府的决策部署上来,以更加坚定的信心和更加扎实的作风,把大数据产业发展抓紧抓实抓出成果。
近年来,党中央、国务院对贵州发展大数据高度重视、寄予厚望。习近平总书记在去年全国两会以及前不久到贵州视察期间对贵州发展大数据产业给予充分肯定。李克强总理、马凯副总理在贵州视察时对贵州大数据产业发展提出明确要求。在贵州省各级各有关部门的共同努力下,贵州大数据产业发展较早迈开了步子,发出了先声,取得了阶段性成果。
陈敏尔说,大数据管大用。发展大数据产业是省委、省政府坚守两条底线的战略选择,是贵州弯道取直、寻找一片“蓝海”的现实路径。各地各有关部门要坚持知行合一,发扬钉钉子精神,多学多思多做,在实践中出真知、出干货,拿事实说话、靠作风吃饭,进一步形成高度共识、形成强大合力,共同推动大数据产业加快发展。
陈敏尔强调,要积极探索大数据产业发展的形态和业态。大胆先行先试,以应用和服务为导向打造大数据全产业链。
一要加快发展大数据核心产业。发展大数据存储产业,促成更多优质资源落户贵州;发展大数据加工产业,通过数据采集、分析、清洗、脱敏、建模,深入挖掘大数据商业价值和管理价值;发展大数据应用设计创意服务产业,让更多数据资源进入市场、服务社会;发展大数据安全服务产业,确保数据安全和信息安全;发展大数据交易产业,让数据成为可供交易的商品;发展智能端产品制造业,推动手机、平板电脑、智能穿戴设备等集聚化规模化生产;发展大数据教学培养研发产业,培养更多实用人才,研发更多先进产品。
二要加快发展大数据关联产业。着力发展服务外包和呼叫服务产业,推动软件和信息技术、设计、研发、工业、科技服务等领域服务外包,做大做强呼叫中心产业;着力发展电子商务,狠抓主体建设、平台支撑和模式创新,推进农村电子商务、社区电子商务和跨境电子商务加快发展;着力发展互联网金融、智慧旅游、智慧物流、智慧教育、智慧能源、智慧医疗等产业,积极培育大数据产业新业态。
三要加快发展大数据延伸产业。进一步拓宽大数据产业幅,延伸大数据产业链。各地各有关部门要结合自身实际,找准产业发展的导航灯和定位器,优化产业布局,引进和培育一批龙头示范企业,加快研发和投资项目建设,制定出台一批扶持政策,推动大数据产业特色化、差异化发展。
陈敏尔要求,抓好大数据产业发展的平台建设。全力打造大数据示范平台,利用国家层面已经批复和即将批复创建的实验区、集聚区、创新试验区等载体,创造可借鉴、可复制、可推广的经验。全力打造大数据集聚平台,重点建好大数据内容中心。
同时,要积极向上向外招引数据资源,吸引一批国家级、行业级、龙头企业数据中心集聚贵州。全力打造大数据应用平台,突出抓好“云上贵州”系统平台建设,进一步理清系统业务构架,解决好生态空间布局、标准、接口等问题,完善“云长”负责制,把“云上贵州”品牌做响做亮。全力打造大数据交易平台,以贵阳大数据交易所为重点,加快数据交易系统建设,完善定价规则和交易流程,抢占行业发展的制高点。全力打造大数据金融服务平台,创建一批互联网金融产业园区,创新互联网金融业态,为大数据产业发展提供更多金融产品和服务。全力打造大数据交流合作平台,统筹谋划、提前筹备好明年贵阳数博会和电子商务创新发展峰会,进一步强化成果展示和招商引资功能,发出贵州大数据发展的好声音。全力打造大数据创业创新平台,继续办好“云上贵州”大数据商业模式大赛,加快建设一批众创空间,推进创意与资本嫁接,让创意之花结出产业之果。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08