
怎么判断一个人是否适合做数据分析_数据分析师考试
你,适合做数据分析师?相信每位数据分析初学者、面试官心里都有这样一个问题,来看看资深数据分析师@joegh(网站数据分析webdataanalysis.net博主)和曹政是怎么回答的。
问题1:怎么判断一个人是否适合做数据分析?
在和大家讨论,部门招聘,现几个人原来是在不同的岗位上的,以前没有做过数据分析,怎么样才能看看出他们是不是适合做数据分析呢,在进行竞聘时使用什么样的题目会比较合适有效呢? 大家有何妙招没?
我觉得无论什么工作兴趣最重要,要做数据分析师最基本的就是不讨厌数字,如果你跟他讲那个指标是通过怎么样的乘除加减得到的,他会觉得不耐烦,那么显然他不适合做数据分析;如果对数据较敏感,能够一眼发现异常值,数据分布情况,当然是最好的。
再则就是逻辑性,可以让他试试爱因斯坦的那道经典的逻辑题,看看能否解出来,需要多久;逻辑思维对数据分析尤其重要,不然会被各种指标的定义规则、与业务的联系纠结死,逻辑思维好的人写SQL等数据处理脚本也会更加高效。
接着是业务理解能力,最简单的就是让他定义下网站的目标是什么,哪些指标可以作为KPI,用户从进入网站到达成网站目标的整个过程是怎么实现转化的,能否画出业务流程图。(宏观层面,不要深入细节)
如果偏技术则需要懂一些数据库结构和SQL,如果偏展现需要考验下对图表的掌控能力,什么时候用什么图表合适,甚至如何配色。
最后就是细心、耐心和交流能力,做数据分析有时会很纠结,细心和耐心是必需的,好的交流能力可以让数据分析师更好地阐述清楚各类问题。
这些都是比较基础的东西,也是短期难以培养起来的技能。至于另外业务相关的一些知识,可以通过培训获取,问一个未接触过你的网站业务的人一些业务知识其实有些不公平,其实如果具备上面几点,一旦熟悉网站和业务之后,一定会成为优秀的数据分析师。
问题2:用什么题目测试更有效?
1、问问他喜欢什么,平时对什么事情有兴趣,然后挖掘这些事情中他关注什么数据,比如买彩票?炒股?看nba?其实里面都有很多数据,他在他喜欢的领域,如果能对数据如数家珍,对数据的解读能到位,(比如对某个nba 球星的数据和所对应的表现状态做评论)至少说明他有很强的数据感。数据感是做数据分析的第一要务。
2、问问他对数据分析的理解和目标,看看他是怎么认识这份工作的。
3、常见数据分析误区有非常多经典范例,给出几个测试题(容易产生误判的数据案例)让他分析解读一下。
4、典型场景分析,在某些业务场合中,最需要关注什么数据,如何解读其中的一些数据特征。
当然,3和4需要面试官或者说主考官有非常资深的场景把握和丰富健全的范例库,如果主考官自己都把握不住,那就没辙了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23