京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据从2011年起变成了炙手可热的话题。大数据一词虽然内涵重心是数据,但其中更为重要的统计思维却往往被忽视。而缺乏统计思维的“大数据”则有可能带来“大偏差”。
谷歌流行病趋势模型,曾经被当做推销大数据概念的金牌案例。其作用是预测流感和登革热的流行病趋势,但实践表明,这一模型并没有经得住时间的考验。从2011年8月21日到2013年9月1日期间,谷歌流行病模型在108个星期里有100个星期高估了流行病数据。2013年1月,谷歌流行病趋势模型的估计值是实际数据的2倍。如此大的误差显然是无法接受的。
大数据作为二手数据,缺乏行政监督,很多时候也没有办法控制大数据的样本,大数据的样本往往是有噪音的和冗余的,这些问题给大数据分析带来了一定的障碍。谷歌流行病预测模型的目的是预测全美流感发病率,用的数据是搜索引擎用户的搜索记录。但是,全美国民和搜索引擎用户并不是同一个概念。有流感症状的人并不都会使用搜索引擎查询,而使用搜索引擎查流感症状的人也不见得都得了流感。谷歌流行病模型的基础是流行病发病和各种关键词搜索之间的相关关系,但是这种相关关系不是一成不变的,当媒体大量报道和普及流行病常识时,公众在一定程度上产生恐慌,会带来搜索量的突增,这种突增并不意味着流行病的爆发。这也是谷歌流行病预测模型失败的主要原因之一。
在统计学视角里,样本并不是越大越有价值,统计学强调的是样本的代表性,这一代表性一般是通过抽样调查来满足的。如国家统计局为了更好进行抽样调查,建立了基本单位名录库,名录库就是统计调查中的抽样框,抽样样本均来自于抽样框。抽样框既是选择样本单位的依据,也是推断总体的依据。在分析问题时,弄清楚自己的研究总体是非常重要的,如果大数据样本不是研究总体,也不是研究总体的抽样样本,这个时候用大数据做结论就需要非常小心,不然很容易由“大数据”带来“大偏差”。
统计与信息技术联姻,是大数据发展的必由之路。直视当下大数据分析中存在的问题,在利用机器学习算法的同时结合统计学的思维,才能更好地利用大数据这个工具,让大数据时代变得更美。(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27