
微电商背后是大数据在统筹全局_数据分析师考试
2014年除了捧红“O2O”一词之外,“微商”也是今年的当红炸子鸡。自从微信崛起,微电商也随之兴起,今年要说谁在微信朋友圈最活跃,非微商莫属,各种面膜、护肤品代购比比皆是,更有人直接把“微商”定义成了“朋友圈卖货的”,业内人士对于微商的存在也一直处于褒贬不一的态度。相比传统电商,微商似乎给人一种更加虚幻的错觉,其背后暴露出来的问题也是层出不穷:信任危机、售后服务、质量保障等,微商之路要想渐行渐远,除了需要一条明确的规划之外,还需拥有自己的大数据!
一、微商无法用一种商业模式来定义
微电商作为一个新兴产业,有着微信做它的销售平台,为它解决支付问题,又有亿万粉丝成为它的潜在客户,为它解决客源问题。但凡事都有两面性,微商数量喷井的这两年,也造成了如今这种混乱的局面,单从商业模式来分析,它无法只用一种来定义。
首先微商可以是C2C模式,这种发展模式是目前最普遍的现象,只要你注册一个微信,拥有朋友圈,再从一商家那里拿到货,便可直接在朋友圈宣传,利用粉丝关系进行销售。但是这种模式的缺点在于无法保障售后服务。例如:面膜、护肤产品海外代购。
其次微商可以是B2C模式,该模式下商家通过微店直接面向消费者销售产品和服务。相比C2C模式,多了一层服务保证。其缺点在于买家无法辨别卖家的可信度,微店设置没有任何门槛,其中不乏一些黑店浑水摸鱼,欺骗消费者。
最后微商也可以是O2O模式,其中有不少传统零售企业做微电商的案例,在PC电商时代,拥有复杂的线下销售体系曾被认为是一种负担,但是O2O改变了这种现状,拥有线下实体店的企业是目前最被看好最适合O2O转型的体系,结合线上线下统一运营。
二、 微电商背后是大数据在统筹全局
百度CEO李彦宏认为,未来科技发展将与大数据有很大关系。在这个“数据爆炸”的年代,每天都有大量的数据产生,但有些数据并没有发挥它们真正的价值。就拿微电商来说,其中有一小部分是只争朝夕,只顾赚取眼前利益的,对于这类微商,他们没有更多的资金去聘请第三方来帮助他们收集管理数据,更不会主动去分析每次交易背后产生的有利数据,因此他们的微商之路只会朝不保夕,日渐黄昏。
相反如果是追求长期发展,并有较大规模的微商,其背后是大数据在统筹全局。下面结合齐著云科技有限公司推出的顾客行为管理系统为例,分析如何利用大数据来经营线上实体店?
(一)通过会员行为数据分析,生成报表实现精准营销
消费者无论是通过微信还是APP购物,一定会留下他的行为数据,例如顾客在哪一款呢大衣界面逗留的时间较长,就能知道他比较偏爱哪一款的服装。这些看似微小的细节,在微商这里就是有价值的数据。在顾客行为管理系统中,我们能清楚看到每一件商品交易的时间、次数、金额、客户地域分布等信息,将信息转变成数据报表,利于企业做出精准性的营销。
(二)后台数据管理规范化,实现线上线下信息同步
O2O推行的难点在于线上线下信息的统一化、规范化,目前零售企业的营销体系主要包括这两大类:直营体系和直营+代理加盟体系,针对直营体系的企业,齐著云认为,所有门店和微店的数据信息进行统一管理并不难,中间不会牵涉任何信息泄露、利益争夺问题,很容易实现线上线下信息的同步;但是针对直营+代理加盟体系的企业而言,我为什么要和直营商一起同步信息,会不会抢占我代理区域的客户资源?这些都是他们担忧的问题,那么要如何说服代理加盟商一起做大数据管理呢?——建立利益分享机制。将所有新增用户的地点进行经纬度的获取,并及时关联至该位置最近的门店信息,将该用户的信息与该门店进行绑定。企业根据自行设定的分享规则,可以将一部分营业额分派给所属门店或渠道,从而实现利益共享,提高导购对微商城推广的积极性,同时解决代理加盟商的转型顾虑。
三、“另辟蹊径”方能使微商走得长远
微商13年发展,经历了红利时期,各大领域都有品牌接连崛起,给很多平凡人带去了一笔财富,截至今日,仍有很多自然人甘愿投身到这一行业中。笔者认为,在很多人眼中微电商就是利用微信平台做生意的人,其实不尽然,所谓微电商应该是以整个移动端作为销售平台,而不是只限于微信。当大家还在朋友圈抢的头破血流的时候,另一边已经有企业开始另辟蹊径了。是什么?它就是微官网。无需下载APP客户端占据我们的手机内存,消费者只需在手机上创建一个快捷键,便能在任何有WIFI的环境下畅快购物。微商之路上除了APP、微信,如今又多了一个微官网来分割移动端市场,笔者相信暨微信之后,微官网依然会是先行者得天下。
四、总结:大数据是未来移动电商的行业趋势
据统计,中国移动网民数量已经达到5.27亿人,每天都可能有几千人甚至几万人在浏览你的手机商店(微官网/APP/微商城),此时如果微商还没有开始收集用户的数据,与后期营销进行融合,那即便做了O2O,也无法实现精准营销。目前,也许仍有很多企业无法理解大数据的作用是什么,但是过不了多久我们的市场会替商家逐步证明大数据的存在价值,完成数据积累将会是移动电商面向未来发展的一个根基,也是行业趋势。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07