
学习SPSS,要有小强精神_数据分析师考试
从2007年开始,我已经陪SPSS玩了8年。从一个小菜鸟开始自学SPSS和统计分析,直至数据分析、数据挖掘的基本知识。这期间,博客是伴我学习的最主要阵地,记录学习过程、认识这个领域里的人,交流再到提升。
SPSS是一个非常神奇的案头工具,跑一组数据的背后是探索一项业务问题,从数据到规律,但并不是所有的分析项目都能得到价值信息,大多时候是枯燥、反复的过程。想掌握SPSS,没有统计分析和数据化思维就是白搭。
统计是SPSS的基石,严谨的统计学思维和SPSS统计方法被滥用是两个矛盾体,学习SPSS的人都会遇到这个问题。一边是简单易用的菜单式操作,另一边是滴水不漏的统计基础,而spss傻瓜式的默认设置基本能完成大部分分析项目,这极易造成统计分析方法被滥用,尤其是SPSS新手。
8年SPSS经验,是不是就可以称得上是老手了?我觉得还远远不止,现在数据挖掘也罢,大数据也罢,统计学作为基础学科对其未来发展衍变的影响不可替代。学习SPSS,没有高手低手之分,唯一的分别是使用SPSS的频率完全不同。高校搞科研,一个工科的博士可能只需要spss来完成一篇论文,从此丢弃;而一个真正的喜欢研究数据的人,可能视spss为知己,案头必备。
统计往深处讲,一入统计深似海。此处省略n字,我只讲一下发生在我身边的事。由于我的博客专注于SPSS案例分享,多年坚持不懈吸引到很多读者,经常遇到SPSS咨询,千奇百怪的问题,各种各样的业务环境,我觉得对某项统计方法掌握的不错,实际上在和具体业务分析对接中,才发现有偏差,如何正确通过统计思维和方法破解业务问题的数据规律更像是一门艺术。
很多初学者对我说:数据分析的门槛太高了,所以一直没有下决心行动起来。这话是对的也是错的。为什么对?数据分析涉及统计基础、工具使用、可视化、数据挖掘方法、数据化思维,尤其是如何与业务问题进行结合的实践经验,所以说有一定的门槛。为什么不对?如果你的兴趣足够浓厚,一切困难都阻挡不了你前进的脚步。
说到最后这一句,不由想到了小强,都说打不死的小强,小强到底强到哪里?蟑螂的历史有数亿年,而人只有几百万年;蟑螂在水下至少可以活上30分钟;蟑螂的头断了以后,身子和头还可以分别活上好几天,最后的死因是饿死;蟑螂拥有梯状神经系统,在大脑取出后,仍可以通过分布于身体各处的神经来控制运动及生理功能,巨强。
学习spss、学统计,学数据分析,就要有小强精神,不屈不饶,坚持不懈。一入统计深似海,但我们还要从此不屈如小强。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04