京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据基金该怎么投_数据分析师考试
自去年以来,大数据基金纷纷成立。在运作了将近一年的时间里,这些大数据基金体现出来的特性如何?适合什么样的投资人?如何投资才能收益最大化?
风格迥异
目前市场上正在运行的大数据基金有4只,分别是中证腾安价值100指数、中证百度百发策略100指数、中证淘金大数据100指数和大数据系列策略指数(i100和i300)。4只跟踪上述指数的基金分别是博时中证淘金大数据100、银河中证腾安指数,广发百发100、南方大数据100。
具体从4只指数基金来看,风格迥异的同时也有相似点。
广发百发100跟踪百发100指数。该指数采用百度金融搜索和用户行为大数据,通过相应的数据挖掘和分析手段,将涉及特定金融实体的数据进行自动分析、归并、统计和计算,并引入量化投资模型,编制股票市场指数。
南方新浪大数据i100与广发中证100较为相似,它以新浪财经的互联网财经大数据应用为特色,基于财经新闻媒体与社交平台海量大数据,在选股策略上,i100指数综合财务、市场驱动、大数据三大因子。
博时中证淘金100,从编制方案来看,以电商商品类目相关中证三级行业的所有股票为样本空间,从中根据综合财务因子、市场驱动因子、聚源电商大数据因子选取综合评分最高的样本股,并采用等权重计算。数据来源为支付宝的实际交易,包含了行业的价格、销量、人气等景气程度数据。对样本空间的股票,按其综合财务因子、综合市场因子和淘宝大数据因子计算的综合评分降序排列,选取排名前100名的股票作为中证淘金大数据100指数成分股。
银河定投宝中证腾安价值100更偏爱被低估的上市公司:指数依据定价偏离程度排序,佐以质价比率、公司资质、每股评分等多项财务指标,选择市场价格相对低估的100家上市公司股票为样本。指数样本主要集中于工业、可选消费及医药卫生三个中证一级行业,样本数量分别达到30只、23只及14只,合计权重达67%。信息技术、原材料、金融地产、主要消费、电信业务、能源及公用事业依次排名4到10位。
高贝塔适合波段操作
从这些大数据指数走势来看,更具备高贝塔产品的特性。
今年以来,淘金100涨幅86.37%,中证腾安价值100涨幅64.01%,百度100涨幅51.65%,新浪大数据i100涨幅82.37%。同期上证综指今年以来的涨幅为25.83%,沪深300涨幅18.18%,创业板指数涨幅96.89%。
自6月份发生的股市大跌,沪深300由最高点跌至近期最低点的跌幅为34%,上证指数跌幅不到35%,创业板指数跌幅51%。同期,淘金100跌幅46%,中证腾安价值100跌幅44%,百度100指数跌幅49%,新浪大数据i100跌幅42.7%。
从4只大数据基金或长或短的历史业绩可发现,大数据基金相对于普通的权益类基金在股市中表现为净值波动大。有基金经理表示,与成熟市场主要由理性机构投资者构成相比,A股市场仍以散户为主,因此市场受投资者情绪影响很大,投资者情绪可以更多地反映在互联网大数据上,但投资情绪的巨大波动也会带来互联网基金的高贝塔属性,对此投资者要有心理准备。从目前来看,投资者在市场低位布局该类基金,等待市场热度提升,是比较好的方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05