
大数据下的 商业学习实验 能否改变超市业_数据分析师考试
消费动力不足、利润下滑、电商侵蚀,大型超市的突围之路在哪里?掌握以大数据分析为基础的“商业实验学习”的5个方向,将给零售企业带来数以亿计的经济效益。
零售企业可能每天都会产生令人兴奋但有些风险的创意,这些点子要不要做?效果又会如何?
大数据下的“商业学习实验”
台湾的全家便利店,在台湾拥有2000多家门店。它们在调查中发现,消费者对现煮咖啡有显著需求。对全家而言,是贸然在所有门店都提供现煮咖啡,还是将这些咖啡机将优先添置在某些店铺?现煮咖啡大卖的同时,是否会挤占店里其他咖啡及饮料产品的销售额?
过去,富于经验的管理者会通过直觉形成策略假设。而现在,他们可以通过APT以大数据分析为基础的“实验与学习”软件,进行更为谨慎的数据求证——挑选一些店面小量测试这个新点子的不同做法,从结果中学习,找出对公司营收、净利润、投资回报、市场占有率最成功的版本,从而设计出一套最佳的推广方案,再全力推动。而这套系统性的方法叫做“实验学习”。
首先,APT将2000多家门店的资料输入一个数据平台,并在两周内将过去3年来全家便利数千台收款机的交易记录转化成一个数据库;在两个月内为每一家门店建立一个属性档案,包括店铺大小、周边人口年龄、就业状况、竞争商家的距离、地理位置等等关乎经营的所有要素。
之后,APT选择一批店铺,分成实验组和参照组进行实验。通过“商业实验学习”,全家便利店增设咖啡机的疑问很快找到了答案,他们了发现了导入咖啡机的优先顺序,并获悉了哪些位置的店铺根本不需要咖啡机,而哪些店铺在导入咖啡机后提升了净绩效。
类似的抉择也曾出现在赛百味身上。2008年,这家企业打算在北美市场推出一款一英尺长的5美元潜艇堡,希望借此特卖商品带来更多生意,但是他们又担心促销活动影响价格较高三明治的销售。
为了检验商业创新的可行性,他们同样和APT设计一个实验,在搜集完所有餐厅的信息后,分类工具挑选出拥有近乎一致的餐厅面积、地理位置、周边人群结构、商圈特性等外部要素的实验组和参照组。在实验周期内,分别比较餐厅整体销售业绩,5美元潜艇堡销售额以及其他三明治的销售情况。实验结束后,平台上的综合财务计算工具可以在数小时内提供结果,显示这款特价潜艇堡真的为企业带来业绩的提升。
“商业实验学习”的提出者APT公司(Applied Predictive Technologies,亚博德)创建于1999年,主要业务集中在成熟的北美市场,是一家通过“实验学习”协助企业优化策略的软件公司,星巴克、赛百味、卡夫食品、沃尔玛等公司曾先后应用过APT产品。目前,APT在亚太地区为中国、日本、新加坡及澳洲等超过10大市场提供客户服务。
商业实验学习的5个方向
在目前消费动力不足、成本水涨船高的情况下,再加上遭受电商侵蚀的大型超市开始寻求新的发展道路。“对以店面为主的大型超市来说,成百上千的分销网络是一个极具价值的知识和信息来源,他们可以从中汲取成败教训。”APT副总裁及亚太区负责人李展宏说。他表示,“商业实验学习”会给超市业带来以下5方面的帮助:
1.提升O2O的ROI。O2O整合的本意是希望通过在线销售、吸引那些原本不会前往这些店面消费的新增客户,以增加收入来源。而事实却事与愿违,一些店面新客户没有增长的同时,还产生了庞大的营运成本。李展宏表示,若在方案推广前,先针对少数样本店面进行“在线购物、上门取物”的实验测试,将可能降低这些创新计划推行的风险。然后再根据数据,针对显著获利的店面进行锁定和精准推广,将更有效提升该计划的ROI。超市有很多独特优势,比如那些保质期短的食品、生鲜食品、易损易耗品,都是电商的短板,超市不妨做大做强。
2.优化海报。海报促销是超市惯用手法,但它真的带来利润了吗?海报设计主要考虑两个问题,海报的发放人群以及放入哪些商品。对于前者,以前的海报发放的主流人群是那些负责家庭采购的阿姨,她们在比较多家超市海报后,买走最廉价的商品;对于后者,可能一款特价啤酒获得了巨额的销量成长,超市可能会认为本次促销相当成功。其实真相很可能是大部分的消费者只购买了特价啤酒,而没有顺带购买任何其他商品,虚假繁荣背后是超市的毛利受损。
通过“实验学习”得出,在海报发行时要区隔不同的客户群,吸引更多年轻人进超市购物会带来更多利润;至于放入哪些商品,需要超市进行大量的交易数据分析,以设计哪些优惠产品。比如将薯片或是色拉放在啤酒旁边,可能会增加客户的单笔销售金额。
3.扩张自有品类。自有品牌是超市经营的一大法宝,在这一领域,沃尔玛、华润万家、屈臣氏、万宁等超市和连锁店近几年一直都在耕耘。据研究报告,美国超市业的自有品牌近3年的销售成长超过18%,是其他品牌商品成长率的两倍以上。
对于零售商而言,扩张自有品类不能简单仿制成功的制造商产品,这样会造成大量产品销售不良。李展宏表示,为了使扩张自有产品线创造更多利益,超市管理者需要策略性优化商品组合,以避免交易下降而损害毛利。超市企业可以利用交易数据分析,了解哪些品项常出现在金额较高的交易中,并且常被高价值客户购买,以优化自有品牌成长策略。
以山姆会员店为例,山姆店在中国的经营目标是满足商业会员在销售、办公和发放福利需求,同时满足高收入的个人会员的需求。因此,山姆会员商店销售的8块装 “会员优品”香皂、整箱装的复印纸,现实的销售数据也证明了这些经过改造的产品是自有品牌成功的典范。
4.精准族群促销。通过绑定会员资料与交易数据,超市可以开展分群促销,这样能准确了解每次促销的替代效果、延迟消费的现象,以及不同消费者在各因素上变异。
比如特价啤酒促销可能使消费者仅购买大量的折价啤酒,导致未来的销售下降,进而损害毛利。针对小部分的顾客测试将会减少毛利显著下降的风险,并能协助企业了解哪些分店可以产生额外效益,而哪些分店仅是让利于客户,因为客户无论如何都会购买该商品,最终导致毛利下滑。
5.衡量SNS营销。当80后日渐成为超市的主要顾客群,许多超市使用微博、微信和其他SNS工具作为提供促销及特殊优惠信息的传递渠道。企业可以透过实验,比较有投放广告的实验组及未投放广告的对照组的市场业绩差异,避免浪费广告投资,并且专注于较有效的市场与顾客群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22基于 Python response.text 的科技新闻数据清洗去噪实践 在通过 Python requests 库的 response.text 获取 API 数据后,原始数据 ...
2025-08-21基于 Python response.text 的科技新闻综述 在 Python 网络爬虫与 API 调用场景中,response.text 是 requests 库发起请求后获取 ...
2025-08-21数据治理新浪潮:CDA 数据分析师的战略价值与驱动逻辑 一、数据治理的多维驱动引擎 在数字经济与人工智能深度融合的时代,数据治 ...
2025-08-21Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14