
大数据预判能力或可指导散户“趋利避害”_数据分析师考试
如果你在牛市来临前三个月就能预知市场即将迎来的行情,是否还会为踏空而抱憾?如果你在股市下跌前可以了解到,熊市已经成为大家所关注的热点搜索内容,“躲过一劫”并不是没有可能。
日前,百度发布《新一代理财消费者大数据报告》,数据显示,网民的搜索大数据已经在金融领域显现出了“预判”的能力。很多重大事件,比如央行降息,股市上涨、股市下跌在此前发生的搜索数据中,已经可以捕捉到“降息”、“牛市”、“大跌”等成为热词。英大证券首席经济学家李大霄认为:随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可能比股票分析师更清醒
在百度公布的这份报告中显示:2014年7月以来,中国股市进入牛市通道,2015年4月起进入“疯牛”节奏,5月突破4900点。在百度上对“股票开户”一词的相关搜索也在2014年7月几乎同时开始上涨,一直到2015年4月达到新的高峰,这背后是牛市行情催生出的人们对股票投资的热情和疯狂。
与此同时,股票入门基础知识、炒股入门知识、股票开户、股票入门、股票怎么玩等成为这一时期搜索量最大的关键词。而这批散户也成为4000点甚至4500点以后入市,在此轮股灾中损失惨重的“负面教材”。
在沪指冲上5000点后,李大霄一直是明确的“看空者”,他一直疾呼让股民远离市场风险。他表示:“当时散户和分析师都陷入狂热,8000点、10000点的大牛市声音不绝于耳。”但当时很多和市场一样疯狂的投资者,向他抛扔来“板砖”。而事实证明,有时候大数据比一些所谓分析师与投资者更清醒。
李大霄认为:估值过高是A股暴跌的内因也是最重要的原因,特别是创业板。但当时大家已经陷入不冷静的预期中,认为5000点是牛市的开始。一众散户听着各种分析前赴后继的在5000点前后入市,成为了新增的主力和接盘侠,也最终沦为此次股灾中的受害者。
对于报告中的数据事实,李大霄认为,互联网金融和股市的结合正在越来越紧密,这种紧密体现在股市的波动也会影响产品的波动,反过来,产品的增加或者是产品的止损也会影响到市场,关系紧密了以后,会互相影响互相制约。随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可参与更多金融产品设计
李大霄认为,互联网平台和技术对于传统金融业来讲,正在发挥入口和渠道之外的更大作用。经过2013、2014年的快速发展,互联网金融特别是理财领域,互联网公司开始越来越深入地参与到金融产品的设计、营销中。
在他看来,金融企业有信誉度优势,互联网企业胜在客户体验,未来大数据等互联网技术甚至会深度参与进风险控制,营销以及客户的市场性管理,互联网平台应该更加重视产品线的丰富、给不同的投资人不同的选择,多元化的产品尽可能降低风险。
事实上,以BAT为代表的互联网巨头已经参与进了理财市场。以百度为例,大数据正在其与金融机构的合作中发挥重大作用,这其中,以大数据选股为特色的“百度股市通”炒股软件更是已经展现出互联网平台在金融领域可以参与的新深度。
李大霄认为,百度等互联网巨头的参与,使得互联网证券服务竞争全面加速。通过用户体验的升级和技术创新,百度等拥有大数据资源的互联网公司将会引领未来金融服务的走向,而交易费率的优惠也成为其极具竞争力的优势。
关于未来互联网金融的发展,李大霄认为大数据可能成为互联网与传统金融行业深度融合的催化剂。在他看来,大数据在用户需求挖掘、市场分析、风险分析、趋势洞察等方面都具备无可替代的作用,这一方面可以说是一片蓝海,还处于发展的初级阶段,如果哪个企业能够用好大数据这座金矿,就是无穷无尽的财富,很多机会也都在里面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25