京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据预判能力或可指导散户“趋利避害”_数据分析师考试
如果你在牛市来临前三个月就能预知市场即将迎来的行情,是否还会为踏空而抱憾?如果你在股市下跌前可以了解到,熊市已经成为大家所关注的热点搜索内容,“躲过一劫”并不是没有可能。
日前,百度发布《新一代理财消费者大数据报告》,数据显示,网民的搜索大数据已经在金融领域显现出了“预判”的能力。很多重大事件,比如央行降息,股市上涨、股市下跌在此前发生的搜索数据中,已经可以捕捉到“降息”、“牛市”、“大跌”等成为热词。英大证券首席经济学家李大霄认为:随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可能比股票分析师更清醒
在百度公布的这份报告中显示:2014年7月以来,中国股市进入牛市通道,2015年4月起进入“疯牛”节奏,5月突破4900点。在百度上对“股票开户”一词的相关搜索也在2014年7月几乎同时开始上涨,一直到2015年4月达到新的高峰,这背后是牛市行情催生出的人们对股票投资的热情和疯狂。
与此同时,股票入门基础知识、炒股入门知识、股票开户、股票入门、股票怎么玩等成为这一时期搜索量最大的关键词。而这批散户也成为4000点甚至4500点以后入市,在此轮股灾中损失惨重的“负面教材”。
在沪指冲上5000点后,李大霄一直是明确的“看空者”,他一直疾呼让股民远离市场风险。他表示:“当时散户和分析师都陷入狂热,8000点、10000点的大牛市声音不绝于耳。”但当时很多和市场一样疯狂的投资者,向他抛扔来“板砖”。而事实证明,有时候大数据比一些所谓分析师与投资者更清醒。
李大霄认为:估值过高是A股暴跌的内因也是最重要的原因,特别是创业板。但当时大家已经陷入不冷静的预期中,认为5000点是牛市的开始。一众散户听着各种分析前赴后继的在5000点前后入市,成为了新增的主力和接盘侠,也最终沦为此次股灾中的受害者。
对于报告中的数据事实,李大霄认为,互联网金融和股市的结合正在越来越紧密,这种紧密体现在股市的波动也会影响产品的波动,反过来,产品的增加或者是产品的止损也会影响到市场,关系紧密了以后,会互相影响互相制约。随着互联网平台大数据技术的不断更新,这种预判能力或可指导散户们及时“趋利避害”。
大数据可参与更多金融产品设计
李大霄认为,互联网平台和技术对于传统金融业来讲,正在发挥入口和渠道之外的更大作用。经过2013、2014年的快速发展,互联网金融特别是理财领域,互联网公司开始越来越深入地参与到金融产品的设计、营销中。
在他看来,金融企业有信誉度优势,互联网企业胜在客户体验,未来大数据等互联网技术甚至会深度参与进风险控制,营销以及客户的市场性管理,互联网平台应该更加重视产品线的丰富、给不同的投资人不同的选择,多元化的产品尽可能降低风险。
事实上,以BAT为代表的互联网巨头已经参与进了理财市场。以百度为例,大数据正在其与金融机构的合作中发挥重大作用,这其中,以大数据选股为特色的“百度股市通”炒股软件更是已经展现出互联网平台在金融领域可以参与的新深度。
李大霄认为,百度等互联网巨头的参与,使得互联网证券服务竞争全面加速。通过用户体验的升级和技术创新,百度等拥有大数据资源的互联网公司将会引领未来金融服务的走向,而交易费率的优惠也成为其极具竞争力的优势。
关于未来互联网金融的发展,李大霄认为大数据可能成为互联网与传统金融行业深度融合的催化剂。在他看来,大数据在用户需求挖掘、市场分析、风险分析、趋势洞察等方面都具备无可替代的作用,这一方面可以说是一片蓝海,还处于发展的初级阶段,如果哪个企业能够用好大数据这座金矿,就是无穷无尽的财富,很多机会也都在里面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30