
大数据时代下 主数据作用不可忽视_数据分析师考试
当越来越多的企业采用大数据技术、云计算以及社交媒体来发现客户需求、拓展业务时,他们需要主数据管理(MDM)来追随这些大趋势,从数据中萃取更大的业务价值,进而优化品牌管理,拓展市场新渠道,打造企业核心竞争力。行之有效的主数据管理不仅能够提升企业的数据质量,更可以和大数据技术紧密结合。
主数据是企业核心业务实体
主数据是企业运营中担当着关键角色的核心业务实体,它们是系统间的共享数据(例如客户、产品、供应商、账户和组织部门相关数据),分散地存在于企业的各业务系统中,也是企业内部能够跨业务、跨系统重复使用的高价值数据。需要注意的是,主数据并不是企业内所有的业务数据,而是有必要在各个系统间共享的数据才是主数据。比如大部分的交易数据、账单数据等都不是主数据。涵盖资源、产品、事件、客户、财务、账户、员工、合作伙伴等,用于描述核心业务实体的数据才是主数据。因此,对主数据的识别,要把握主数据作为业务运作核心的本质。主数据与大数据相得益彰
主数据和大数据的核心都是数据,但它们的关注角度有所不同:大数据关注于数据的量和数据的类型,而主数据则更关注于数据的质量。主数据和大数据的范畴也不是一成不变的,比如在微博上说的一句话是大数据范畴,这种社交类信息一般不会纳入到主数据中,但也有可能随着时间的推移、技术的进步以及成本的降低,在不久后归入到主数据范畴内。
主数据侧重于数据的组织,而大数据则提供了更多的原材料。举个例子,现在不管是产品销售还是服务推广,都强调的一个前提是以客户为中心,保险公司若要推销一种保单,会关注客户和潜在客户在这个保单群里的言论,这些都是大数据,而具体到究竟是哪个客户发表的言论则属于主数据的范畴。所以说,企业要获得更好数据应用效果和价值,应以主数据为中心、为筋脉,通过主数据把各类散乱的大数据有效串联起来。同时,大数据也是主数据的一个重要补充,两者的结合可以达到很好的效果。
主数据平台就像一个八爪鱼,它以主数据为中心,跟各个内、外部系统建立联系。主数据管理不仅要整合业务系统中高价值数据,还要将外围更广泛的数据整合到主数据周围来。大数据常以非结构化形式存在,甚至不在企业内部,那么如何去结合呢?企业需要一套产品使企业能够利用高效、低成本的计算架构实现:在大数据中快速解决个体识别问题,比如客户识别;在数据集分区不可行的情况下,高效完成大批量数据,避免重复化;以更佳的成本效益方式加强社交媒体分析,并将碎片化的个体拼接为完整的个体,以实现有实际意义的交互分析。
现在,人们不用把照片和视频之类的大数据拿到主数据平台上,通过两个系统的整合依然知道在哪里能找到这个客户相关的视频信息,这种系统集成的需求会越来越广泛。与以往传统的只是集成企业最核心系统不同,会慢慢膨胀得越来越大,内容越来越丰富,而且系统之间整合的形式也趋于多样化,这也是近年来新的发展趋势。提升企业数据的整合和管理能力,将数据集成扩展到社交媒体数据、网络日志、传感器设备数据、文档、电子邮件、其他无编码格式的多结构化或非结构化数据,能够显著减少浪费在垃圾资料的时间,有效降低大数据开发、维护成本。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23