
数据分析技术的主要研究领域及其前景_数据分析师考试
随着分析技术在BI领域重要性的不断提升,厂商们围绕分析技术的竞争也在逐渐升温。分析技术正在不断地成熟之中。随着商业智能(BI)软件成本在IT预算中所占份额的不断上涨,以及数据收集与存储成本越来越受到分析使用的驱使,DBMS和企业应用厂商都将其在产品差异化的努力集中在分析技术方面。 然而,却很少有企业会进行大量的计划工作,以迎接正在蓬勃发展的分析技术。诚然,许多企业在数据仓库方面进行了非常仔细的设计。
但是,在大多数的企业里,部门性的BI应用和分析应用的安装几乎都是杂乱无章的。 现在是采取更严肃的态度来看待分析性IT战略计划的时候了。这不仅仅是因为分析技术在你的预算中占有更大的份额。分析技术不仅比以前所占的份额更大,而且它还拥有更多的集成点,其中包括分析范围内以及交易系统之外的集成点。 现在,就让我们来探讨一下目前分析技术集成的5个主要研究领域。
1. 集成监控、评估与信息发送 从历史的角度看来,BI技术包含了信息发送与分析工具的混合体――例如实时查询、实时报告、企业报告、多维分析、图形数据可视化等。这一切如今正在集成于新一代的技术之中。 随着时间的推移,传统的BI技术变得越来越不那么重要了。用户的中央监控工具将是门户或仪表板。这种格式会首先显示有哪些指标超出预期的范围之外,并仅在事后让用户了解报告的准确数字。 通常,这是一种对传统以报告为中心的系统的改进,这种系统可能提供大量的数据,然后让用户自行搜索和查找异常情况。而在时间就是金钱的时代里,异常情况的警告可以直接发送至手机或其他移动设备上。
2. 监控、评估与事务处理应用 过去,BI技术一直是只读的,而且与事务处理数据库的拷贝相互抵触。因此,从技术上讲,把BI技术与事务处理系统集成起来似乎很不自然。但是,我们不妨从业务流程的角度来看待这个问题。当管理人员注意或得到警告,在度量中出现了异常情况――到底是“什么原因导致警告”呢? 这个原因通常都将成为采取行动的一个过程,也许是在生产或购买过程当中,但是也很有可能是在企业的其他所有领域。 全新一代的混合分析/事务处理应用正在出现,以支持这些新的流程。你可以等待获得此类打包应用,或许也可以使用一些流程规范工具。但是,无论使用上述哪种方式,对于你来说,流程(以及由此而出现的应用)将是至关重要的。
3. 内部分析技术 分析技术的传统工作就是要准确地弄清楚要向哪位客户提供什么服务,以便让这种关系尽可能地带来利润。 在某些环境里,例如手机服务提供商的呼叫中心等,实时地进行此类分析将是极其重要的。因此,分析工具――通常是统计工具――必须按照顺序运行事务处理系统。与此同时,某些客户营销应用正试图对测试和统计分析系统化,以使其作为事务处理直邮业务流程的一部分。
4. 计划及其他 几乎每一个组织都有各自庞大的预算与计划过程。但是,现代企业计划技术已使数千个企业的计划过程多多少少地被规范化了。即便如此,大多数企业的预测体系仍然是得不到有效支持的。随着计划技术的不断发展,事务处理应用、监控/评估、计划自身甚至统计分析随时都会有合并的可能,以形成更好、更及时的预测系统,并且制订更有用的项目计划。
5. 集成分析数据管理 一些核心服务器的技术问题也需要考虑。把企业报告、实时查询以及各种不同的分析集成至一个单一的服务器可能是一件非常费力的任务,它要求在选择分析技术的厂商时要进行细致的评估。但是,服务器方面的问题比这个问题还要更广泛。DBMS厂商正在着力进行数据的聚合。BI厂商也正在努力,尽可能地使DBMS的性能变得不再是必不可少的。数据高速缓存也正在以有趣的方式集成到应用服务器之中,而且一些著名的BI产品还包含了其自己的应用服务器。
此外,一些专业MOLAP(多维联机分析处理)数据库服务器的厂商则由于其核心利益受到关系型DBMS技术进步的侵蚀,正在更加疯狂地试图为自己寻找发展方向。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15