京公网安备 11010802034615号
经营许可证编号:京B2-20210330
酒店营销:多图解析大数据时代行动与策略_数据分析师考试
大数据有助于为住宿业打造忠诚度和提高转换率,但也带来挑战。数据库通常分散在酒店品牌的不同部门,利用客户信息的关键是把这些数据整合在一起,以及从大数据中发现价值。
酒店业数据利用现状
长期以来,很多数据存在于酒店基础设施中却得不到很好地分享对比、可视化分析从而未采取行动、调整其系统。酒店业已经部分企业开了有意识的学习,并保持在行业前列。当然营销成本和回报需要考虑,数据驱动的优势也很重要。
拥有大量数据是好事,但关键是解决好如何利用数字信息流,更好地发现、追踪并维持忠诚度和回头客。数据显示,如果能利用好客户信息,那么客户获取成本可以降低21%,而酒店和汽车转化率能提高17%。
旅游与数据:平台、数据库、旅程
根据酒店从不同途径收集的各种数据,价值挖掘的关键在于连接不同信息使其可视化、可分析、可应用。价值在于赢得回头客。根据今年全球酒店行业营收统计,酒店行业略显波动,2008年全球酒店营收达4470亿美元,2009年降至3950亿美元,2010年为4190亿美元,2011年为457亿美元,预计2016年将突破达到5500亿美元。
提升酒店宾客关系:数据连接的价值和潜力
大数据对酒店方有益的关键领域在于识别并获取目标顾客类型。借助客人入住数据、分类数据、预订数据、网站活动日志、营销历史,酒店可以通过多种途径研究客人。此外,集中处理的数据允许酒店更好地向高端客人营销。
根据Expedia一份2014年的数据显示,商旅客人在旅行中带有一部以上移动设备的比例达97%;休闲游客旅行中带有一部以上手机者比例高达94%;成年人使用智能手机/平板预定酒店客房比例达28%。
数据转为行动:四步曲
1. 数据:第一步是连接所有的数据,将它们从不同品牌系统整合到单一存储库。集中化数据将其变为可搜索的数据,有助于产生先前未识别的行为模式。
2. 分析:有了新的数据存储库,酒店需要能够解读分析并提取细节的工具,也就是能够借助信息推动计划的软件。
3. 培训/雇员:基于大数据认识并创造结果,需要酒店领导制定黑箱(Black Box)以外的方法。进行分析时,正确的工具包和正确的思维都不可或缺。品牌需要专业人士明晰如何处理数据以及怎样从数据模型中获取可视化、可行性的步骤,不论这些专业人士已经在管理品牌或是受聘与系统来培训和扩大现有员工。
4. 追踪指标:确保四部曲成功的一个重要因素是巩固维系期望结果的做法。商业与技术领导需要追踪数据驱动行为的指标和测度。持续追踪允许战略并不断微调。
一个重要的根本是通过整合不同数据,利用工具进行分析,并提升到专业层面,酒店逐渐改变。这不是一个有限的项目而是需要持续努力。随着酒店认同这一概念,未来战略正准备进一步发展品牌宾客关系。
未来酒店:借力工具,扩大宣传
当酒店品牌数据能对接另外数据时,转换的可能性会进一步扩大。例如,一个酒店品牌如果能够与航班分享数据,通过品牌间互动,可以了解用户在飞机上和酒店里的行为表现和花费情况。
如互联网营销公司Cendyn/One与Andara酒店和度假村联手进行了基于数据的营销活动,在人口统计学、行为数据、地点、基于意愿的信息基础上,针对30岁以上年收入20万美元以上的家庭进行精准营销,收效明显。其提高消费者通过预订引擎的比例达275%,产生营收提升121%,在广告花费上提升31%,转换率提高34%。
品牌数据与其他数据相对接,这种前瞻性尝试让大数据最终有效作用于旅游品牌,开启了一片新天地。如果客户数据能成为行业范围汇集的、更加一般性的基础信息,那么这将成为竞争的一个转折点。品牌和营销人员会更加密切地关注个性化拓展。
思考与策略
• 寻找高端细分作为专有数据集。了解酒店品牌前25名(或前250,前2500)客人的行为和偏好,向这些人提供个性化服务营销和CRM宣传。
• 将其他客人在操作层面上进行分类。酒店品牌可以进一步依据花费、频次、辅助习性、忠诚度和喜好等因素,对其他客人归类,然后据此对细分市场进行宣传。
• 进行数据分析以追求品牌的“最佳客户”。酒店品牌能够建立最佳客户模型,能基于任何数量的标准和目标,深挖第三方数据,以发现匹配模型的客人概况。因此,营销更加智能,能够接触更好的潜在顾客,转换率也持续增加。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在金融行业的数字化转型进程中,SQL作为数据处理与分析的核心工具,贯穿于零售银行、证券交易、保险理赔、支付结算等全业务链条 ...
2025-12-24在数据分析领域,假设检验是验证“数据差异是否显著”的核心工具,而独立样本t检验与卡方检验则是其中最常用的两种方法。很多初 ...
2025-12-24在企业数字化转型的深水区,数据已成为核心生产要素,而“让数据可用、好用”则是挖掘数据价值的前提。对CDA(Certified Data An ...
2025-12-24数据分析师认证考试全面升级后,除了考试场次和报名时间,小伙伴们最关心的就是报名费了,报 ...
2025-12-23CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-23在Power BI数据可视化分析中,矩阵是多维度数据汇总的核心工具,而“动态计算平均值”则是矩阵分析的高频需求——无论是按类别计 ...
2025-12-23在SQL数据分析场景中,“日期转期间”是高频核心需求——无论是按日、周、月、季度还是年度统计数据,都需要将原始的日期/时间字 ...
2025-12-23在数据驱动决策的浪潮中,CDA(Certified Data Analyst)数据分析师的核心价值,早已超越“整理数据、输出报表”的基础层面,转 ...
2025-12-23在使用Excel数据透视表进行数据分析时,我们常需要在透视表旁添加备注列,用于标注数据背景、异常说明、业务解读等关键信息。但 ...
2025-12-22在MySQL数据库的性能优化体系中,索引是提升查询效率的“核心武器”——一个合理的索引能将百万级数据的查询耗时从秒级压缩至毫 ...
2025-12-22在数据量爆炸式增长的数字化时代,企业数据呈现“来源杂、格式多、价值不均”的特点,不少CDA(Certified Data Analyst)数据分 ...
2025-12-22在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17