
企业应用大数据的三个误区和原则_数据分析师考试
目前大数据很火,但是实际情况并不像大数据供应商说的那样,企业采用了大数据就会产生商机。目前企业对于大数据有三个认识误区:一、大数据技术会自行识别出商机;二、就是掌握的数据越多,自动创造出的价值也越多;三、数据科学家可以帮助任何公司从大数据中盈利,无论该公司的组织架构如何。
误区一:大数据技术会自行识别商机。
危险:尽管投入了大量的资金和时间,但这种投资所产生的回报非常有限。失败的技术布局往往是以假想这种新工具会自行产生价值开始。成功利用大数据能量的企业往往都是在重金投入大数据技术前,先将高级分析应用于少量高价值商业问题的解决。在这个过程中,他们学会了如何有组织地实施解决方案,也获得了对于运营挑战的新认识,并渐渐了解其数据和技术的局限性。根据对于他们实际需求的理解,他们可以确定大数据技术解决方案的具体要求。
误区二:掌握的数据越多,自动产生的价值也越多。
危险:对于未经证实的数据来源过度投资,忽略了那些有价值的、接近真相的数据来源。
随着社交媒体和移动设备的爆炸性增长,获取和利用新数据的诱惑在不断强化。很多大型机构已经被淹没在数据的海洋中了,其中多数数据存储在筒仓内,不能轻易接触并连接。我们发现,成功的大数据之路往往始于充分开发该机构的现有数据。
误区三:好的数据科学家会为你发现价值。
危险:现有组织还没有做好实现数据价值的准备。为了从大数据中持续获利,你需要打造出一个持续利用大数据和高级分析力量的运营模式。基于数据和分析团队的思考,成功的数据驱动业务可以让其组织、流程、体制和能力协调化,以做出更好的业务决策。
总结
那些能够实现客户数据分析承诺的公司通常遵循以下三个规则:
在投资大数据技术解决方案前,证明你所在的机构可以将高级分析应用于解决一些高价值的业务问题。
在向新数据来源扩张前,先利用现有数据创造价值。然后再利用测试学习的方法,向你的历史数据注入前瞻性数据。
将运营模式赋能企业,特别是业务前线,使其快速行动,并对企业高级分析团队的洞见报有信心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07