京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“新业态”下的信用风险 大数据征信的黑白两面_数据分析师考试
“从放贷人那里采集借款人信息”,这是中国人民银行征信中心副主任王晓蕾对于“征信”的理解,也是学院派对于征信的经典界定,然而革新者已经抛弃了这一界定,与之一同被抛弃的还有征信数据采集限于“金融属性信息”的范畴和“采集者与信息产生没有任何关系”的独立第三方原则。
新业态带来新问题:社交数据能否做征信依据民营征信机构能否保持独立
“从放贷人那里采集借款人信息”,这是中国人民银行征信中心副主任王晓蕾对于“征信”的理解,也是学院派对于征信的经典界定,然而革新者已经抛弃了这一界定,与之一同被抛弃的还有征信数据采集限于“金融属性信息”的范畴和“采集者与信息产生没有任何关系”的独立第三方原则。
非金融属性的数据能做征信吗?
7月11日下午,在上海外滩举办的“2015上海新金融年会”上,央行征信中心副主任王晓蕾、美国征信巨头FICO中国CEO陈建,以及四家即将拿到个人征信牌照机构的负责人坐在一起,就中国互联网金融和征信的发展展开了激烈的讨论。
“我不知道你们说的‘征信’是指什么,”王晓蕾首先表达了困惑,互联网金融的发展放大催生了征信的“新业态”,这种“新业态”让像王晓蕾这样全程参与了央行征信中心设计和建设的征信老兵也开始看不懂了。
追本溯源,基于银行借贷信息建立起来的个人征信中心,其初衷在于建立一个“放贷人之间的信息共享数据库”,原则上由放贷人上传所有借贷人的真实信用信息。但互联网企业所宣传的“大数据征信”早已不再是这种传统意义上的“征信”,其直接表现就是采集数据的范畴已经突破了“金融属性”,从仅收集真实借贷人的信息,延伸到未发生借贷的信息,如社交数据、电商数据等没有金融属性、缺乏验证性、弱关联的互联网大数据。
与此同时,征信机构“独立第三方”的边界也被模糊了。征信机构恪守的“数据从第三方来给第三方用”的绝对独立第三方原则,与民营机构数据的采集和使用都与自身有千丝万缕的联系形成了鲜明的对比,如腾讯征信用微信、QQ的社交数据,服务腾讯的放贷业务;芝麻征信使用的是阿里的电商数据,服务阿里的放贷业务。
在这种扩展了信息收集范围又模糊了独立第三方原则双突破的“新业态”下,不仅征信在风险管理上的效力有待检验,个人享受的公平信用权利也面临风险。
“新业态”下的信用风险
就数据有效性而言,有人已经提出直接的怀疑。
今年初,央行印发《关于做好个人征信业务准备工作的通知》,要求芝麻信用、腾讯征信、前海征信、鹏元征信、中诚信征信、中智诚征信、考拉征信、华道征信这8家民营征信机构做好个人征信业务的准备工作,准备时间为6个月。如今6个月已到,第一批民营征信机构牌照发放在即。
对于使用互联网大数据做征信,中智诚征信有限公司CEO李萱并不乐观,“迄今为止,没有一个国家,没有一家真正的征信机构做出来的基于互联网的征信产品,能够应用于较大的人群。”拥有19年征信从业经验的李萱进一步从技术评分的角度解释道,“我们没有见过一个基于互联网大数据做出的模型KS评分能够超过35分。”KS指数是衡量模型辨别能力的普遍方法,数值在0—100之间,数字越大模型越有效,35分为模型是否有效的地平线。
但在一线开拓业务的互联网金融企业对“大数据征信”依然拥有热情和信心,就在此次峰会召开的半个月前,6月26日,京东正式对外宣布投资Zestfinance,这是一家用互联网大数据做征信的美国新创公司,双方成立了合资子公司,欲为京东金融业务提供征信支撑。
京东金融战略发展部副总裁姚乃胜,亲自操刀促成此次合作的大数据征信拥护者,向《IT时报》记者表达了观点,“如果电商数据都没用,那么什么数据有用?说电商数据不行的人怕是已经过时。”
对像京东金融一样长期无法接入央行征信系统,又不可能停止业务拓展脚步的互联网金融公司而言,“大数据征信”是一门好生意,尽管效用依然存在争议,但总比“裸奔”要强,而且这种征信一旦被广泛采纳,作用将不仅仅限于风险管理。
潜在的个人利益损失
人们早就领略过央行征信中心的威力,有时甚至不惜拆借高息贷款及时还清银行欠款,以免被计入央行征信系统黑名单中,影响以后诸如房贷等贷款的获得。
“新业态”下数据采集范围的扩大无疑将这种麻烦从金融领域带到整个网络生活中。尽管在2013年3月15日实施的《征信业管理条例》中规定,未经同意,平台不得收集、使用个人信息,但人们为了获得平台提供的服务往往轻易就“同意”了。
令人担忧的是,如果这种“新业态”的服务对象不是信贷业务,那么征信机构在出具报告时并不需要严格遵守征信报告的标准,但它所出的产品仍可能影响其他机构对你的态度,例如它从你的网络行为预测你是否有违约的倾向,或者用更为隐蔽的手法——给你的这种倾向一个综合的评分,一个较低的芝麻信用分或许将来会影响你的求职。在美国1970年制定的《公平信用报告法》中,一份信用报告的制作、传播、对违约记录的处理等等都有很严格的规定。
这意味着利用互联网大数据做征信产品的机构无形中获取了某种权力,而由于“第三方原则”被模糊,对个人而言可能是获得更高征信分值成本的提高。仍以芝麻信用分为例,随着芝麻分被越来越多地使用在非阿里系的业务中,如租车、旅游、办签证等等,而其来源数据却仍大多来自阿里系,这意味着个人为了提高芝麻分,必须在阿里体系的生态圈里做更多的事情,比如寻找更多支付宝还款记录良好、芝麻分高的人并成为好友。
监管层期待:做银行做不了的事
监管者并非没有预见风险,实际上王晓蕾在会上反复强调自己“不了解8家民营征信公司具体的产品”,能不能起作用尚有待观察。
王晓蕾对P2P的理解是,“P2P是独立出来的专业化的信用风险管理机构”,这种理解高估了当前P2P平台的能力,但反映了监管层对金融创新的期望。
不止一位P2P平台的管理层曾向《IT时报》记者表达过希望能接入央行征信中心的愿望,征信数据的缺失让平台在发展过程中捉襟见肘。在会上,王晓蕾从另一个侧面印证了这一事实,即大量P2P平台将没有央行征信报告的客户拒之门外。
监管层长期对互联网金融持包容态度的基础在于,“P2P是在为中国的普惠金融做贡献,做银行不做的事”。其含义在于,监管层希望互联网金融能够将银行体系服务不到的中小微企业服务好,将央行征信系统中5亿没有覆盖到的人群的信用记录补齐。
倘若它们不能做到这一点,甚至盯着央行征信系统里已有的2.9亿用户,和银行抢夺客户,而放弃服务小微企业的努力,类似“新业态”这种创新所带来的风险,监管层的包容将失去意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29