京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术如何在O2O领域发挥作用_数据分析师考试
大数据的基本情况和特点
大数据的概念最早由国际顶级期刊Nature发表的一篇文章(Big data)提出,有人预测IT(Information Technology)时代即将谢幕,将马上迎来DT(Data Technology)时代。大数据具有以下特点:
随着并行计算能力不断提升和数据存储成本的不断降低,大数据以PB或者EB(1EB等于1024PB,1PB等于1024TB)为量级,并且还在以等同于“硬件摩尔定律”的速度(每18个月翻番)增长。
大数据具有4V特征,即规模大(Volume)、变化快(Velocity)、种类多(Variety)和价值密度低(Value)。
大数据计算的研究应重点聚焦在3个I:近似性(Inexact)、增量性(Increment)和归纳性(Induct)。
大数据技术如何在O2O领域发挥作用
对大数据进行深入分析与动态挖掘,由于数据样本足够大,将形成大量反映事物本质和原貌的规律,这些规律将“复盘式”地反作用于数据的产生过程,并为传统行业提供前所未有的深度优化与智能决策,直到形成运营方式与产品的“颠覆式”质变。
以百度的大数据引擎为例,该技术包含3个重要组件。“开放云”、“数据工厂”和“百度大脑”。运用深度神经网络构建的“百度大脑”,其计算能力目前已经相当于2-3岁小孩的智商。
交通运输部科技司赵冲久司长提到“大数据时代的智慧交通”,并抛出很多感知交通、数据交通、掌上交通和人性交通等新提法。对于交通管理部门,真正落地地做事要远比概念更能体现“人性交通”,比如在会场小编萌生出一个想法,能否让每个公交车司机的手机共享其GPS位置,将这些位置数据发布到一个公交位置查询平台上,每个乘坐公交的市民手机安装“公交位置查询APP”,这样就能以订阅的方式查看自己想要乘坐的公交车什么时候到,合理安排等待时间,这样上班族们就不必在数九寒天里站在公交站旁因为等车而冻得直哆嗦了。当然,如果在“公交位置查询APP”中植入广告,我想效果应该会比公交车里的LED公交媒体强得多。
企业在用大数据技术指导O2O时应该注意些什么
在大数据研究方面的门槛越来越高,需要协同计算才能达到最佳的计算效果,在O2O领域,各个移动互联网应用无时无刻不在生产数据,而数据分别存储在各家公司或应用的数据库服务器中,在大数据背景下,单打独斗已无法胜任深度的数据分析与挖掘,与同行之间、与上下游之间进行有效的大数据协同分析将为整个产业链带来巨大价值。
如今数据管理信息系统已经不能满足传统企业的要求,传统企业需要的是基于大数据的智能优化与辅助决策。在数据资源方面,传统企业应充分利用现有大数据资源,如腾讯的社交大数据、阿里巴巴的商品和交易大数据,百度的基于搜索的“通用”大数据。
在大数据获取方面,不能只停留在PC互联网,应从多渠道广泛获取数据,甚至创造新的数据获取方式。如基于多种传感器的可穿戴设备、自建区域wifi网络、LBS技术等等。
传统制造业应充分重视大数据的优化与指导作用。在生产管理信息化和过程控制自动化的基础上,制造业马上将全面进入工艺制造智能化的时代,在大数据技术与O2O技术的推动下,传统的制造行业势必将迎来腥风血雨般的革命性“颠覆”。
通过大数据分析,传统企业应对用户体验更加重视,大数据将帮助部分传统行业彻底克服信息不平衡、数据不透明、管理低效甚至交易潜规则化等问题,相信在大数据技术的支持下,O2O将快速向前推进。
关于百度大数据技术在O2O发挥作用的思考
(1)大数据存储与大数据呈现方式
百度已经构建具有超大规模存储、分布式计算能力的开放云,目前对于解决国内大数据需求方面应该足以胜任,如何在保护企业数据资产的前提下,促进行业内多企业联合协同进行大数据挖掘,是需要思考的问题,建议在实施机制、成果共享规则方面进行规划,从而运用技术促进行业内大多数企业共同进步。
(2)构建并共享大数据优化共性技术
目前百度数据工厂已经在交通、医疗和金融领域与行业专家展开合作,但不可能解决所有行业的问题,所以百度应该在开放云和数据工厂的基础上,进一步开放大数据挖掘与分析共性技术,将共性技术模块化,形成定制工具包,向O2O创业者与传统行业专家推行,O2O创业者与传统行业专家协同使用这些大数据分析与优化工具,形成一系列基于大数据的智能优化与辅助决策方案,助力O2O快速发展。
百度在中国搜索引擎市场已脱颖而出。针对大数据技术与O2O技术的优化与推进,是百度的优势所在,更是职责所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16