京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据技术如何在O2O领域发挥作用_数据分析师考试
大数据的基本情况和特点
大数据的概念最早由国际顶级期刊Nature发表的一篇文章(Big data)提出,有人预测IT(Information Technology)时代即将谢幕,将马上迎来DT(Data Technology)时代。大数据具有以下特点:
随着并行计算能力不断提升和数据存储成本的不断降低,大数据以PB或者EB(1EB等于1024PB,1PB等于1024TB)为量级,并且还在以等同于“硬件摩尔定律”的速度(每18个月翻番)增长。
大数据具有4V特征,即规模大(Volume)、变化快(Velocity)、种类多(Variety)和价值密度低(Value)。
大数据计算的研究应重点聚焦在3个I:近似性(Inexact)、增量性(Increment)和归纳性(Induct)。
大数据技术如何在O2O领域发挥作用
对大数据进行深入分析与动态挖掘,由于数据样本足够大,将形成大量反映事物本质和原貌的规律,这些规律将“复盘式”地反作用于数据的产生过程,并为传统行业提供前所未有的深度优化与智能决策,直到形成运营方式与产品的“颠覆式”质变。
以百度的大数据引擎为例,该技术包含3个重要组件。“开放云”、“数据工厂”和“百度大脑”。运用深度神经网络构建的“百度大脑”,其计算能力目前已经相当于2-3岁小孩的智商。
交通运输部科技司赵冲久司长提到“大数据时代的智慧交通”,并抛出很多感知交通、数据交通、掌上交通和人性交通等新提法。对于交通管理部门,真正落地地做事要远比概念更能体现“人性交通”,比如在会场小编萌生出一个想法,能否让每个公交车司机的手机共享其GPS位置,将这些位置数据发布到一个公交位置查询平台上,每个乘坐公交的市民手机安装“公交位置查询APP”,这样就能以订阅的方式查看自己想要乘坐的公交车什么时候到,合理安排等待时间,这样上班族们就不必在数九寒天里站在公交站旁因为等车而冻得直哆嗦了。当然,如果在“公交位置查询APP”中植入广告,我想效果应该会比公交车里的LED公交媒体强得多。
企业在用大数据技术指导O2O时应该注意些什么
在大数据研究方面的门槛越来越高,需要协同计算才能达到最佳的计算效果,在O2O领域,各个移动互联网应用无时无刻不在生产数据,而数据分别存储在各家公司或应用的数据库服务器中,在大数据背景下,单打独斗已无法胜任深度的数据分析与挖掘,与同行之间、与上下游之间进行有效的大数据协同分析将为整个产业链带来巨大价值。
如今数据管理信息系统已经不能满足传统企业的要求,传统企业需要的是基于大数据的智能优化与辅助决策。在数据资源方面,传统企业应充分利用现有大数据资源,如腾讯的社交大数据、阿里巴巴的商品和交易大数据,百度的基于搜索的“通用”大数据。
在大数据获取方面,不能只停留在PC互联网,应从多渠道广泛获取数据,甚至创造新的数据获取方式。如基于多种传感器的可穿戴设备、自建区域wifi网络、LBS技术等等。
传统制造业应充分重视大数据的优化与指导作用。在生产管理信息化和过程控制自动化的基础上,制造业马上将全面进入工艺制造智能化的时代,在大数据技术与O2O技术的推动下,传统的制造行业势必将迎来腥风血雨般的革命性“颠覆”。
通过大数据分析,传统企业应对用户体验更加重视,大数据将帮助部分传统行业彻底克服信息不平衡、数据不透明、管理低效甚至交易潜规则化等问题,相信在大数据技术的支持下,O2O将快速向前推进。
关于百度大数据技术在O2O发挥作用的思考
(1)大数据存储与大数据呈现方式
百度已经构建具有超大规模存储、分布式计算能力的开放云,目前对于解决国内大数据需求方面应该足以胜任,如何在保护企业数据资产的前提下,促进行业内多企业联合协同进行大数据挖掘,是需要思考的问题,建议在实施机制、成果共享规则方面进行规划,从而运用技术促进行业内大多数企业共同进步。
(2)构建并共享大数据优化共性技术
目前百度数据工厂已经在交通、医疗和金融领域与行业专家展开合作,但不可能解决所有行业的问题,所以百度应该在开放云和数据工厂的基础上,进一步开放大数据挖掘与分析共性技术,将共性技术模块化,形成定制工具包,向O2O创业者与传统行业专家推行,O2O创业者与传统行业专家协同使用这些大数据分析与优化工具,形成一系列基于大数据的智能优化与辅助决策方案,助力O2O快速发展。
百度在中国搜索引擎市场已脱颖而出。针对大数据技术与O2O技术的优化与推进,是百度的优势所在,更是职责所在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21