大数据时代的小数据营销过时了吗_数据分析师考试
在大数据大行其道之时,我们积累了几十年、上百年的小数据处理方法是否就意味着过时了呢?
要回答这个问题,我们还是要先从小数据的定义入手。
目前网络和行业都缺乏对小数据的标准定义,在美国、乃至台湾有一种关于小数据的定义,认为相对于服务趋势和战略的大数据而言,那些服务于个体而形成的数据指标,应该称之为小数据。举例来说,谷歌根据人们在搜索引擎使用的关键词的相关性,判断H1N1流感趋势,为卫生防疫部门提供预防决策属于大数据的典型应用;而耐克和苹果合作开发的“Nike+”软件,为个人的健康和锻炼提供的数据指标和参考,就属于小数据的典型范畴。
我想说的是,如果从维克托的大数据使用的三个原则和标准,我们可以清楚的看到,他所意指的小数据更多的是我们沿用传统方法收集和整理的数据。而这本书的序作者之一的谢文也明确表示,在互联网技术席卷的今天,整个世界会明显地划分为大数据时代、小数据时代、无数据时代,小数据的时代指向更加明显。
所以,我们定义的小数据,应该是在信息和数据不完整的情况下,通过科学抽样和技术调整,为个体或某类具体问题提供数据参考的数据包。
弄清楚了小数据的定义,我们来看看小数据相对于大数据,是不是真的已经out了?
一、整体数据是不是一定优于抽样数据?
互联网技术的发展,为收集整体数据而产生的成本下降直至忽略不计提供了可能,而传统数据的收集方法是在平衡成本和精确之下,选择规范的抽样方法,两者在数量级的比较上就不在一个体量级。从统计的精确度上来说,数据越大,精确度越高,结果也会更加逼近于真相。当年传统的数据处理,正是受制于数据越多成本越大,或者某些现实条件,无法穷尽数据,才不得已采取了抽样分析的折中办法。从数量的角度讲,大数据确实要优于小数据。
但是,小数据分析方法,比如样本方差,尽可能用各类参数将样本与整体之间的差异缩小,让结果无限逼近真实,在趋势和策略判断上,抽样判断和整体判断,其实很多时候都是五十步和一百步的区别;另一方面,小数据时代积累的各类数据处理方法,也仍然是大数据时代数据处理的基础和原则,抛弃小数据来谈大数据,大数据也将是无源之水、无本之木。
二、小数据处理数据的原则是效率优先、精确为辅。
大数据使用的第二个原则追求效率而不是绝对精确,需要重点提到的是,小数据处理体系的存在,正是建立在追求效率而不是绝对精确之上。小数据营销FromEMKT.com.cn一般是针对某类具体问题,在特定的时间段里,需要开展数据的收集、整理和分析,并得出结论以做行动参考。小数据营销更符合实战营销中,不可能在信息完整情况下再进行判断的现实。今天乃至以后很长一段时间的营销现实是:我们必须在竞争对手信息不完整、消费者信息不完整、市场信息不完整等诸多现实情况下,在指定的时间前,做出判断和决策,并付诸于行动。时机就是战机,等到所有信息都完整了,黄花菜也凉了。所以,小数据才会有用抽样代替整体的选择。
另一个现实情况是,在现阶段甚至很长的一段时间里,靠互联网自动采集所有数据还不现实,技术的发展和普及需要时间,很多数据还无法实现网络化,比如因为现实的财务、税务问题,采集经销商的数据就一直是个难点,ERP喊了多少年,进销存喊了多少年,在上了系统的企业里面,经销商的相关数据有多少水分,每个企业都心知肚明。
三、小数据具体问题的个性化处理,更偏重于因果关系而不是相关关系。
维克托提到大数据的第三个原则,就是大数据更注重相关关系而不是因果关系,即两组数据的相关性是数据处理的第一要务,至于为什么相关,这个问题交给计算机自己处理。相关性和因果性,孰轻孰重,《大数据时代》的译者周涛也曾表达了不同观点。我们常说某人读书不求甚解,通常是指其知其然,而不知其所以然。今天大数据将“所以然”的东西交给计算机,使用者只对“然”负责,我和朋友调侃说,这也许是机器统治人类的第一步。
在高度繁荣的信息社会,你要确保计算机“所以然”是可控的,得有两个前提:一个是计算编程的逻辑在开始设定时就是正确的;一个是机器进行海量数据处理时,自身不会因为“疲劳”等因素造成计算错误,而这正是大数据面临的问题。
小数据由于是针对特定问题开展的数据收集、处理和分析,人的因素比较大,大数据的短处正好成为了TA的长处,在数据的处理过程当中,目的的指向性和人与数据的互动会更加有效。
关于大数据相关性的问题,我曾看到一个网上的段子,问影响人寿命长短的因素有哪些,有人通过相关分析得出,一个人庆祝生日的次数与寿命的长短成正比,换句话说,一个人要长寿就要多庆祝生日。稍有常识的人,都知道这是一个逗比的笑话,但是当计算机给出其他的错误相关结果时,我们有多少人能够用常识判断出,这是否是又一个逗比的结果?
用小数据抵制甚至漠视大数据时代的到来,是逆潮流而动的掩耳盗铃;但用大数据时代来否认小数据的价值,是将大数据的历史和未来进行割裂,依然停留在伪数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11