
大数据时代的小数据营销过时了吗_数据分析师考试
在大数据大行其道之时,我们积累了几十年、上百年的小数据处理方法是否就意味着过时了呢?
要回答这个问题,我们还是要先从小数据的定义入手。
目前网络和行业都缺乏对小数据的标准定义,在美国、乃至台湾有一种关于小数据的定义,认为相对于服务趋势和战略的大数据而言,那些服务于个体而形成的数据指标,应该称之为小数据。举例来说,谷歌根据人们在搜索引擎使用的关键词的相关性,判断H1N1流感趋势,为卫生防疫部门提供预防决策属于大数据的典型应用;而耐克和苹果合作开发的“Nike+”软件,为个人的健康和锻炼提供的数据指标和参考,就属于小数据的典型范畴。
我想说的是,如果从维克托的大数据使用的三个原则和标准,我们可以清楚的看到,他所意指的小数据更多的是我们沿用传统方法收集和整理的数据。而这本书的序作者之一的谢文也明确表示,在互联网技术席卷的今天,整个世界会明显地划分为大数据时代、小数据时代、无数据时代,小数据的时代指向更加明显。
所以,我们定义的小数据,应该是在信息和数据不完整的情况下,通过科学抽样和技术调整,为个体或某类具体问题提供数据参考的数据包。
弄清楚了小数据的定义,我们来看看小数据相对于大数据,是不是真的已经out了?
一、整体数据是不是一定优于抽样数据?
互联网技术的发展,为收集整体数据而产生的成本下降直至忽略不计提供了可能,而传统数据的收集方法是在平衡成本和精确之下,选择规范的抽样方法,两者在数量级的比较上就不在一个体量级。从统计的精确度上来说,数据越大,精确度越高,结果也会更加逼近于真相。当年传统的数据处理,正是受制于数据越多成本越大,或者某些现实条件,无法穷尽数据,才不得已采取了抽样分析的折中办法。从数量的角度讲,大数据确实要优于小数据。
但是,小数据分析方法,比如样本方差,尽可能用各类参数将样本与整体之间的差异缩小,让结果无限逼近真实,在趋势和策略判断上,抽样判断和整体判断,其实很多时候都是五十步和一百步的区别;另一方面,小数据时代积累的各类数据处理方法,也仍然是大数据时代数据处理的基础和原则,抛弃小数据来谈大数据,大数据也将是无源之水、无本之木。
二、小数据处理数据的原则是效率优先、精确为辅。
大数据使用的第二个原则追求效率而不是绝对精确,需要重点提到的是,小数据处理体系的存在,正是建立在追求效率而不是绝对精确之上。小数据营销FromEMKT.com.cn一般是针对某类具体问题,在特定的时间段里,需要开展数据的收集、整理和分析,并得出结论以做行动参考。小数据营销更符合实战营销中,不可能在信息完整情况下再进行判断的现实。今天乃至以后很长一段时间的营销现实是:我们必须在竞争对手信息不完整、消费者信息不完整、市场信息不完整等诸多现实情况下,在指定的时间前,做出判断和决策,并付诸于行动。时机就是战机,等到所有信息都完整了,黄花菜也凉了。所以,小数据才会有用抽样代替整体的选择。
另一个现实情况是,在现阶段甚至很长的一段时间里,靠互联网自动采集所有数据还不现实,技术的发展和普及需要时间,很多数据还无法实现网络化,比如因为现实的财务、税务问题,采集经销商的数据就一直是个难点,ERP喊了多少年,进销存喊了多少年,在上了系统的企业里面,经销商的相关数据有多少水分,每个企业都心知肚明。
三、小数据具体问题的个性化处理,更偏重于因果关系而不是相关关系。
维克托提到大数据的第三个原则,就是大数据更注重相关关系而不是因果关系,即两组数据的相关性是数据处理的第一要务,至于为什么相关,这个问题交给计算机自己处理。相关性和因果性,孰轻孰重,《大数据时代》的译者周涛也曾表达了不同观点。我们常说某人读书不求甚解,通常是指其知其然,而不知其所以然。今天大数据将“所以然”的东西交给计算机,使用者只对“然”负责,我和朋友调侃说,这也许是机器统治人类的第一步。
在高度繁荣的信息社会,你要确保计算机“所以然”是可控的,得有两个前提:一个是计算编程的逻辑在开始设定时就是正确的;一个是机器进行海量数据处理时,自身不会因为“疲劳”等因素造成计算错误,而这正是大数据面临的问题。
小数据由于是针对特定问题开展的数据收集、处理和分析,人的因素比较大,大数据的短处正好成为了TA的长处,在数据的处理过程当中,目的的指向性和人与数据的互动会更加有效。
关于大数据相关性的问题,我曾看到一个网上的段子,问影响人寿命长短的因素有哪些,有人通过相关分析得出,一个人庆祝生日的次数与寿命的长短成正比,换句话说,一个人要长寿就要多庆祝生日。稍有常识的人,都知道这是一个逗比的笑话,但是当计算机给出其他的错误相关结果时,我们有多少人能够用常识判断出,这是否是又一个逗比的结果?
用小数据抵制甚至漠视大数据时代的到来,是逆潮流而动的掩耳盗铃;但用大数据时代来否认小数据的价值,是将大数据的历史和未来进行割裂,依然停留在伪数据时代。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16