京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据挖不到的,是情怀_数据分析师考试
某购票平台日前发布了一个名为“大数据时代的电影消费洞察”的报告。不仅有常见的观影习惯、观影人群的统计,还发布了更大的野心,比如将利用购票数据对电影拍摄和宣传发行提出建议,有助于选择更卖座更有票房潜力的电影题材。
这是个顺理成章的野心。看电影不像买水果,你可以先看后买,甚至先尝后买。看电影就像一次小小的猜谜或者冒险,好看还是难看,喜欢还是厌烦,盖头揭开之后才会知道。此前你看到的宣传,无一例外的是王婆卖瓜自卖自夸,谁见过批评自己的广告?其实,卖家也悬着一颗心呢,上一部大卖下一部冷场的遭遇并不是个案,片商们前赴后继地交学费还是找不到一劳永逸的秘诀。
大数据的优越感此时显露无遗。观众喜欢小清新还是重口味、哪个明星更有票房号召力、哪些题材有话题性、哪些炒作效果好、可能的票房是多少,进行数据分析就可以得到答案。然后,精准地投其所好、按需生产,自然容易产销对路,投资风险也会随之降低。有点像打牌,虽然不能清楚地看见对手的每一张牌,但掌握了对手的偏好和习惯,胜算就大得多了。
大数据真是个靠谱的好东西。可惜,它碰到的是电影这个不怎么靠谱的特殊品。电影生产的,不是实实在在的水果,而是一个银幕上的梦。观众买到的,是很快就会化作回忆的几个小时的体验。给观众一个什么样的梦,就是业界良心了。此时,大数据就没那么神勇了。
电影产业链的每个环节都需要数据支持,这已经是个不争的事实。大众喜闻乐见,当然是个好理由,却不能视为唯一的标准。一味看重市场强调票房,就容易用市场逻辑取代艺术思维,导致天平的失衡。底层的努力奋斗哪有上层的浮华时尚来得好看,缜密深沉的剧情哪有简单狗血来得痛快?没有了艺术思维,最吸引人的恐怕就是直接的感官刺激了。大众此时此地的喜好,多半是即食性的消费行为,选择观众最习惯最好消化的喂食,这样的影片除了提供酸爽的快感,几乎没有任何营养可言。比如拍摄速度奇快票房奇高的《小时代》和《何以笙箫默》,乍看起来很是养眼,似乎也无辜无害,粉丝和明星之间一个愿打一个愿挨,搞不好还是两厢情愿皆大欢喜,关你啥事?如果粉丝们都甘之如饴地接受在物质奢华面前走形的友谊、爱情,如果观众们都把苍白矫情的粗制滥造当做格调和情趣,那就真该问一下业界良心在哪里了。这些伴随着粉丝成长的电影,会影响着一代人的价值观和文化品位。作为电影中的一个类型,它们有存在的理由,却不该是市场的垄断者。在它们之外,还有更广阔更深沉的生活,如果因为主流观影人群的陌生或排斥而不能进入影院,就是不小的遗憾了。
能够传诸后世被奉为经典的东西,往往是大数据的挖掘机难以抵达的角度和深度。大数据会推出《泰囧》、《心花路放》,但不会对《一九四二》感兴趣,更不可能青睐《归来》的故事。一个《小时代》大行其道的时代,不会是电影的大时代。
一个时代的电影,总带着一个时代的清晰烙印,也必然带着一个民族的文化气息。电影从来不单纯是个娱乐产品,它还给人们以启迪和教育。电影的教育意义,在电影的故事和情节中,更在故事和情节背后的人文关怀中。在电影背后是怎样的一双眼睛,是进步的还是保守的?用怎样的价值观去看待当前的时代和远去的历史,用怎样的视角去观察和表现不同阶层的人群,都会通过观影经历潜移默化地传达给观众。这种细腻微妙的文化情怀,这种主创人员创造出的独特风格,这种经由火候和经验文火炖出来的分寸感,是佳片的必备因素,却是大数据无能为力的。在呼唤人文情怀、盼望精品力作的今天,即使暂时没有精品批量出现,至少也该旗帜鲜明地亮出精品思维和精品追求。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20在商业数据分析领域,“懂理论、会工具”只是入门门槛,真正的核心竞争力在于“实践落地能力”——很多分析师能写出规范的SQL、 ...
2025-11-20在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11