京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据为外贸发展带来新机遇
重构外贸流程,激发增长潜力。2014年上半年,一达通、敦煌网、亿赞普等第三方外贸服务企业的在线交易平台打破了外贸整体低迷的态势,实现了交易量40%的超高速增长。交易平台依托大数据服务功能,整合外贸信息流、资金流、物流,降低了交易成本,提高了交易效率。比如,在一达通平台上,企业通关时间从原来的2天缩短到6小时,退税从3个月缩短到3天。交易平台上的中小企业还能在大数据“经济雷达”的引领下,直接面对海外消费终端客户,精简海外营销环节。
大数据与平台数据对接,促进平台功能延伸。第三方外贸服务企业借助大数据分析吸引中小企业群体在其平台进行交易、结汇和融资,中小企业在平台交易形成的数据和信息又为第三方外贸服务企业拓展服务功能、创新数据服务产品提供机会,大数据与平台数据实现了良性互动。第三方外贸服务企业利用大数据拓展平台服务功能,逐渐延伸出在线报关、信用融资、跨境结算、全球商业咨询等高增值服务,外贸业务的专业化、信息化水平显著提高。如一达通整合平台上万家中小外贸企业交易信息,编报外贸景气指数、外贸运行动态报告等,提供给银行、政府部门参考。亿赞普集团与欧洲等地电信运营商合作,自行开发170多项专利,对海外市场消费行为变化等做量化分析和趋势预测,帮助外贸企业对目标终端市场进行“点对点”的线上精准营销。据测算,利用大数据精准营销的成本较传统展会营销、海外设点营销至少减少1/10。
企业国际化步伐加快,大数据与实体经济加速融合。第三方外贸服务企业主要有跨境电商企业、外贸综合服务企业、供应链管理企业三种。随着市场竞争日趋激烈,许多国家积极扶持本国贸易领域的大数据服务商。为适应这种形势,我国企业积极推进国际化战略,将业务领域向投资和服务延伸。这也促进了大数据服务与实体经济的紧密结合。
实践中存在的主要问题
传统外贸管理模式需进一步调整。我国通关、退税、结汇等环节互联互通电子化程度不高,政企数据对接存在障碍,B2B(企业对企业)实现全程在线交易困难较多。各地方、各部门对第三方外贸服务企业的管理未完全形成工作合力。
法律政策尚不健全,市场秩序有待规范。我国外贸大数据应用还处在起步阶段,相关法律政策有待建立健全。互联网企业征信体系尚未建立,第三方外贸服务企业实际上替代社会承担中小企业的信用风险。企业和个人信息安全问题、数据共识性问题、技术标准化问题、政府监管问题等诸多方面仍需规范。
企业深入挖掘信息和客户资源难度较大。部分国家出于信息安全考虑,对其数据运营商与我企业合作持抵触态度。国内企业尚未摆脱传统外贸发展定式,借助大数据整合外贸资源、获取发展商机的意识不强。
大数据服务外贸发展仍面临较多瓶颈。我第三方外贸服务企业开发和利用大数据面临技术研发力量不足、海外平台建设门槛高、融资难度大、海外仓功能单一、网络征信评级标准不统一、专业人才匮乏等实际困难,亟须国家加大政策和资金支持力度。
利用大数据支持外贸发展的思路
积极支持大数据在经济领域的应用。利用大数据开展国际经济和贸易便利化合作。支持国内电信运营商和大数据服务平台企业走出去。加强大数据在外贸领域应用的宣传和引导,鼓励企业研发数据信息分析技术,指导外贸企业尤其是中小企业利用数据分析掌握市场需求、准确捕捉商机。
加强法律制度建设,保证实体经济安全。将大数据纳入电子商务基本法律框架,加强对数据收集和使用的监管,保护企业和个人的隐私与合法权益。支持权威数据库的开发开放,推动建立大数据发布、共享、传输、软硬件系统和服务标准体系。利用大数据搭建互联网诚信体系。
建立大数据平台,提升贸易便利化水平。改革进出口管理方式,尽快建立涵盖报关、报检、结汇、退税等环节的统一大数据平台,逐步实现政企数据对接、线上线下同步,最终取消纸质单据审核。可考虑设立全国性的通关数据中心,企业在中心预报关,而后任选国内一口岸进行报关报检。
推动解决大数据落地应用难问题。支持我企业与跨国电信运营商合作建设海外大数据平台,鼓励企业开发数据及信息分析技术。支持第三方外贸服务企业利用大数据合作建立外贸企业征信体系,提供便捷、高效的互联网金融服务,降低企业融资成本。支持企业扩大海外仓功能,试点建设境外商贸物流园区,为海外仓提供融资保险、保税物流、展示展销等综合性服务。重视数据分析领域的人才培育和引进。(刘希若 陈凯杰 作者单位:商务部政研室、外贸司)(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,树状图(Tree Diagram)是呈现层级结构数据的核心工具——无论是电商商品分类、企业组织架构,还是数据挖掘中 ...
2025-11-17核心结论:“分析前一天浏览与第二天下单的概率提升”属于数据挖掘中的关联规则挖掘(含序列模式挖掘) 技术——它聚焦“时间序 ...
2025-11-17在数据驱动成为企业核心竞争力的今天,很多企业陷入“数据多但用不好”的困境:营销部门要做用户转化分析却拿不到精准数据,运营 ...
2025-11-17在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07