
借力大数据提升公共服务质量_数据分析师考试
大数据时代,公共管理领域的决策将日益基于数据分析而作出,大数据在政府公共服务领域必将发挥重要的决策支撑作用,甚至能够为公共服务提供方式带来革命性影响。可以说,大数据不仅是技术变革,更是一场社会治理方式的变革,政府应当因势利导,借力大数据优化公共服务方式,提升公共服务质量。
准确把握公共服务需求
公共服务本质上属于以服务形式提供的公共产品。由于服务具有不可分割性,服务的生产过程同时也是消费过程,因此,对于作为服务提供者的政府来讲,要想让自己提供的公共服务“合口味”、进而提升公共服务质量,必须在提供服务之前掌握大量的决策支撑信息,特别是准确把握服务对象对于公共服务种类以及质和量等方面的需求。这其中就涉及如何高效地将社会成员的真实需求收集起来并进行有效的整合。
在收集和获取公共服务需求信息时,传统的入户调查式方法不仅费时费力,而且还得“一事一查”,效率极差;而运用大数据技术则可以轻而易举地解决这个问题。我们只需要将多部门建立的信息数据库加以归集、整合、转化,并进行挖掘、处理和分析,就可以很快地准确把握服务对象的公共服务需求。当中可能的困难是需要将不同部门数据格式、采集标准、显示规范都不同的海量数据读取、转换并统一呈现出来,数据清理的工作量和难度还是很大的。对此,政府可以设立或指定专司大数据归集、处理、挖掘和分析的部门来专门负责,并借助最新数据处理技术来解决,政府其他业务部门有数据使用需要时只须“按需下单”即可,省时省力、效率倍增。
精确核算公共服务成本
现代政府在每出台一项公共政策的时候,都需要进行成本核算。同样,在开展公共服务时,政府也需要进行成本——效益分析,将成本费用分析法运用于政府部门的计划决策中,以寻求在公共服务决策上如何以最小的成本获取最大的收益。这是公共决策科学性以及经济性原则所要求的。
以往,政府在开展公共决策可行性论证以及编制公共服务预算时,往往只能依靠已有的零散信息直接进行成本概算,或者依靠外部专家进行所谓的“充分”论证。事实上,这两种常见的成本核算方式所能掌握的数据信息都是不完全的,一般业务部门和外部专家所能掌握的信息处理能力也相对有限,据此得出的成本核算结论往往距离真实情况较远。因此,这些传统的公共决策成本核算方式都不可避免地存在很大缺陷。主要表现在:政府在进行公共服务决策时,如果将成本和困难估计大了,可能导致该提供的公共服务没能提供,影响服务需求的满足和社会问题的解决;反之,如果将成本和困难估计小了,则可能导致公共服务的财务可持续性存疑,影响政府公信力。政府在编制公共服务预算时,如果将成本概算多了,可能导致公共服务项目经费结余过多、出现年底“突击花钱”等非正常现象,影响公共资金使用效率;如果将成本概算少了,则可能导致公共服务项目经费短缺,致使原本应该提供的公共服务项目无法提供、原本能够达到的服务水准也无法达到。
大数据时代,政府在进行公共决策或进行编制公共服务预算时,可以借助大数据技术在海量数据处理和挖掘方面的优势,对分散在政府各个部门的数据进行有效整合,剔除无效和干扰信息,进行深度挖掘,寻找数据间的关联性,既考虑当前情况,也预测未来变化,从而能够基于相对完全信息得出成本核算结论,提高决策科学性和预算准确性。
合理配置公共服务资源
政府提供公共服务,不可避免地会碰到一个可及性问题,也就是如何准确高效地将公共服务资源配置和递送给有需要的社会成员。从社会成员的角度来讲,就是他们能否更便捷、以更低的成本享受到政府提供的公共服务。公共服务的可及性问题不仅直接影响公共服务的供给效率,也关系到公共服务项目能否最终“落地”、满足社会成员的服务需求。从理论和实践两个方面来看,民生服务可及性主要受到公共服务资源配置均等化水平、公共服务管理服务体系及具体服务流程完善程度这两个方面的制约和影响。大数据时代,政府完全可以借力大数据技术优化公共服务资源配置,并对公共服务管理服务体系及具体服务流程进行再造。这一点不仅对于公共服务资源配置顶层设计重要,而且对处在公共服务“最后一公里”的基层末梢也是至关重要。
具体而言,在优化公共服务资源配置方面,大数据技术能够在以人口为核心的关键数据、各种类型构成数据以及公共服务机构和设施分布数据的支撑下,很清楚地提示公共决策者哪个地方公共服务资源过于集中,哪个地方相对缺乏。这样就能够有效防止政府部门在进行公共服务资源配置时将“均等”标准变成“平均”指标,搞平均主义、“撒胡椒面”,有助于政府将公共服务资源向欠发达区域、乡村地区以及困难群体重点倾斜。
在公共服务管理服务体系及具体服务流程再造方面,大数据技术能够帮助政府部门在公共服务供给过程中实时定位公共服务的重点对象,迅速找到管理服务体系中的薄弱环节及具体服务流程中的遗漏缺憾与服务盲区,并据此提出再造公共服务体系及具体服务流程的合理化建议,使得政府提供的公共服务能够靠前接近最有需要的重点人群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25